

ODU-MAC® Blue-Line

A new performance class.

Up to 2,500 V, 12 bar, 10 Gbit/s, > 10,000 mating cycles and 4.0 GHz.

MANUAL MATING AUTOMATIC DOCKING

ODU-MAC® SILVER-LINE

ODU-MAC® WHITE-LINE

ODU-MAC® Blue-Line

FEATURES

- Economical, efficient solution
- Rugged version
- > 10,000 mating cycles
- Equipping of the modules flexibly and conveniently by using the clip principle
- Low contact resistances
- High reliability
- Highest packing density

APPLICATIONS

- Medical
- Industrial
- Measurement and testing
- Military and security
- Energy
- eMobility

All shown connectors are according to IEC 61984:2008 (VDE 0627:2009); connectors without breaking capacity (COC).

Tested acc. UL 1977/CSA C22.2 No. 1823. Tested acc. MIL/SAE/EIA. (ODU-USA is registered with the DDTC and able to complete ITAR restricted manufacturing projects.)

All dimensions in mm.

Most of the pictures are illustrations.

All data and specifications subject to change without notice.

Issue: 2017-01

LICD 2 (

CAT 6

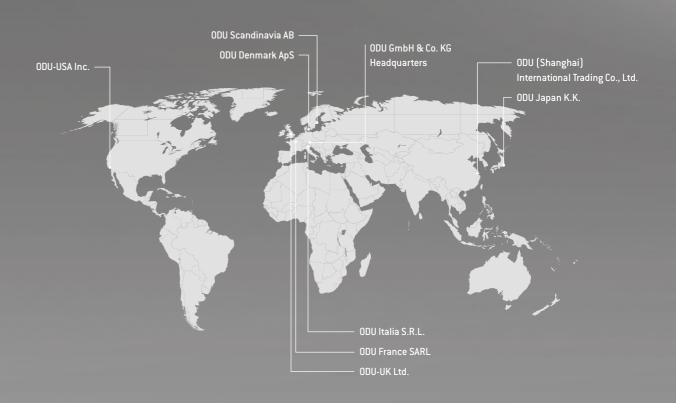
Notwork

EiroWir

TABLE OF CONTENTS

THE UDU CURPURATE GRUUP	<u>4</u>
PRODUCT INFORMATION	10
Compact modular connector system	
Web configurator	
Correct configuring – step by step	_
Manual mating	
Automatic docking	_
The contact principle	
Contact and module fastening with the clip principle	
MANUAL MATING	20
MANUAL MATING	
Spindle locking	
Plastic housing	
Metal housing	
Lever locking	
Transverse locking	
Frame for housing	
Accessories	
Coding possibilities	
	_
AUTOMATIC DOCKING	<u>72</u>
Requirements on the complete system	
ODU-MAC® Blue-Line docking frames	The state of the s
ODU strain relief housing	<u>77</u>
MODILLE	80
MODULE	<u>00</u>
OverviewSignal	
Power	the state of the s
High current	
Coax	
Compressed air and accessories	
Shielded implementation/high-speed connector	
Fiber optic	
PCB termination modules	
Blank modules	
TOOLS, CRIMP INFORMATION, PROCESSING INSTRUCTIONS, ACCESSORIES	126
Termination technology Crimping tools	
Tensile strength diagram for crimp connections	
Crimp information	
Assembly aid	
Removal of contacts	
Maintenance package	
TECHNICAL INFORMATION	
International protection classes acc. 60529:2013 (VDE 0470-1:2014)	
Explanations and information on insulation coordination	
Conversions/AWG	
Operating voltage according to EIA-364-20D:2008	
Current-carrying capacity Technical terms	
IECHIIICAI (EHII)	<u>149</u>

For assembly instructions please refer to our website: www.odu-connectors.com/downloads.


APERFECT ALLIANCE.

CREATING CONNECTIONS, BUILDING ALLIANCES, COLLABORATING INTO THE FUTURE: WHETHER TWO TECHNICAL COMPONENTS COME TOGETHER TO FORM A UNIT OR PEOPLE COME TOGETHER TO STRIVE FOR GREAT RESULTS — THE KEY IS TO ASPIRE IN ACHIEVING SUPERB RESULTS. THIS GOAL DRIVES OUR WORK. PERFECT CONNECTIONS THAT INSPIRE AND DELIVER ON THE PROMISES.

ODU WORLDWIDE

ODU GROUP OVERVIEW

- More than 70 years of connector experience
- €146 million* in turnover
- Over 1,650 employees worldwide
- 9 sales subsidiaries: China, Denmark, France, Germany, Italy, Japan, Sweden, the UK and the US
- All technologies under one roof: Design and development, machine tool and special machine construction, injection, stamping, turning, surface technology, assembly and cable assembly

*As of February 2016

CERTIFIED QUALITY

- DIN EN ISO 9001
- ISO/TS 16949
- DIN EN ISO 14001
- ISO 13485
- Wide range of UL, CSA, VG and DVA licenses
- UL-certified cable assembly

For a complete list of our certifications, please visit our website.

- Application-specific hybrid interface
- For manual mating and automatic docking
- The highest packing density
- Flexible modular construction
- Multitude of data transmission modules
- Variety of locking options available
- For the transmission of signals, power, high current, high voltage, coax, high-speed data, fiber optics and other media such as air or fluid.
- Mating cycles scalable as required from 10,000 to over 100,000 (1 million)

PUSH-PULL CIRCULAR CONNECTORS

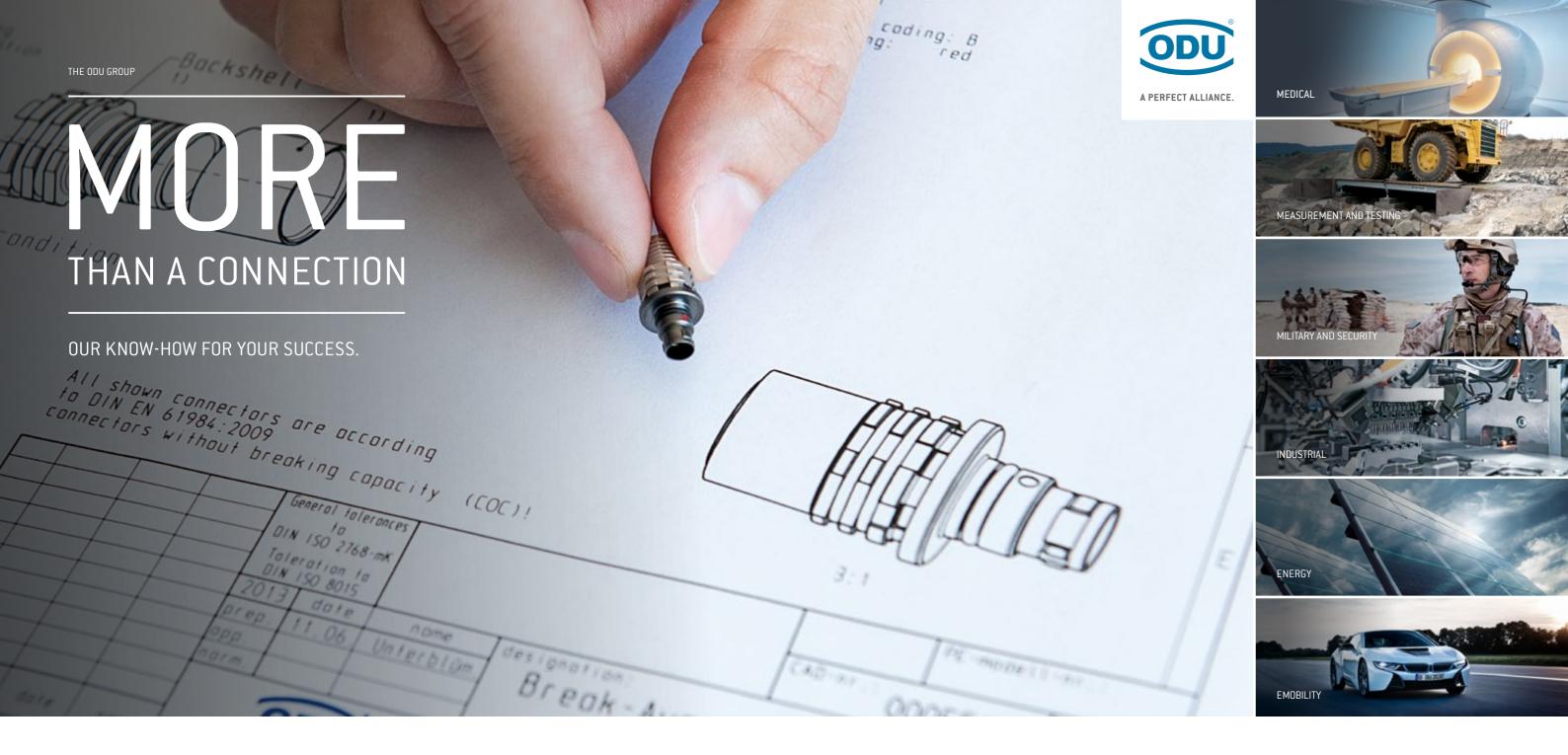
- Circular connector series in robust metal or plastic housing
- Contacts for soldering, crimping and PCB termination
- With Push-Pull locking mechanism for a secure connector
- 2 up to 55 contacts
- IP 50 to IP 69
- Autoclavable for medical applications

SINGLE CONTACTS

- Versatile connector technologies
- Outstanding reliability, lifetime and durability
- Up to 1 million mating cycles
- Current-carrying capacity of up to 2,400 amperes and more
- Rugged contact systems, suitable even for harsh environment
- Economical solutions for automatic processing

HEAVY-DUTY & DOCKING AND ROBOTIC CONNECTOR SOLUTIONS

- Extremely durable even under extreme/harsh environments
- Interference-free and secure connection, even under vibration
- Up to 500 A (higher currents upon request)
- High contact security due to the springwire technology
- High pin density due to a minimum contact
 diameter.
- Low contact resistance


APPLICATION AND CUSTOMER-SPECIFIC SOLUTIONS

- Contacts, connectors and assemblies for the highest technical requirements as well as special applications
- First-class implementation expertise
- High level of vertical manufacturing all competences and key technologies under one roof
- Expert advice based on mutual partnership
- Fast development and production

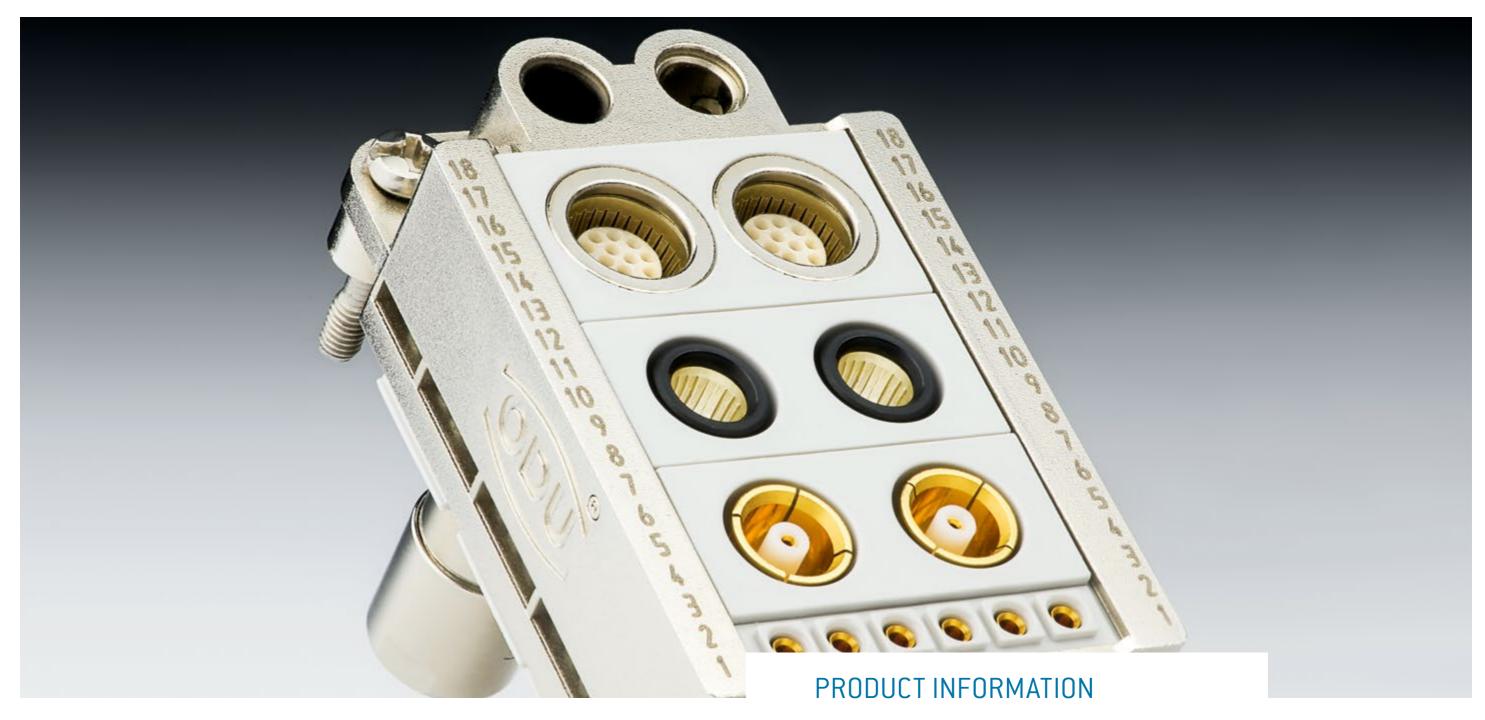
CABLE ASSEMBLY

- Complete systems from a single source based on years of assembly expertise
- State-of-the-art production facilities with 100% end testing, high-voltage testing, component testing and pressure testing up to 100 bar
- Cleanroom production
- Hot-melt and high-pressure injection molding
- Customer-specific labeling
- Rapid prototyping of samples

HIGH PERFORMANCE CONNECTOR TECHNOLOGY FOR DEMANDING KEY MARKETS

Customers rely on ODU technology wherever first-class, high-performance connector solutions are required. All our skills go into our products to ensure your success. In addition to the top quality, reliable stability and maximum flexibility in customer-specific requirements, our products also stand for dynamics, reliability, safety, precision, efficiency and sustainability. And they guarantee unrestricted functionality for the final product due to our high quality connectors. ODU — A PERFECT ALLIANCE.

APPLICATION-SPECIFIC SOLUTIONS


Demands that can't be pigeon-holed call for creative specialists who think outside the box. ODU offers the type of expertise that focuses solely on the specific requirements of our customers. For every development order we get, we not only perform a thorough check to make sure it's feasible, we intensively incorporate our customers in the ongoing design process. This guarantees an impressive, custom-fit final result. Our solutions are frequently based on the modifications of our products, especially for the ODU MINI-SNAP and ODU-MAC connectors.

HIGH LEVEL OF VERTICAL INTEGRATION

ODU combines all the competences and key technologies for the connector manufacturing. These include design and development, machine tool and special machine construction, injection, stamping, turning, surface technology, assembly and cable assembly and our own test laboratory.

INDIVIDUAL CABLE ASSEMBLY

Our production skills together with our cutting edge production facilities from Europe, China and the USA enable us to deliver to our customers local tested assemblies and also global ones.

CONFIGURE THE ODU-MAC® BLUE-LINE.
SIMPLY ONLINE AT: WWW.ODU-MAC.COM

Compact modular connector system	. 12
Web configurator	. 16
Correct configuring – step by step	. 18
Manual mating	. 20
Automatic docking	. 24
The contact principle	. 26
Contact and module fastening with the clip principle	. 28

ODU-MAC®

The ODU-MAC Blue-Line is a convenient, hybrid manual-connector solution comprising a stable frame, various modules and a housing. Its modular design enables it to combine many individual connections in one ODU-MAC Blue-Line. The proven ODU spindle locking in the new standard plastic housing provides the ODU-MAC Blue-Line with a truly unique selling point on the market.

The economical connector system is a modular all-around talent that can be configured for the smallest installation space — available in both a plastic and a metal housing. A multitude of data transmission modules enable a broad area of applica-

tion as a service and interface connector, such as in mechanical engineering, in measurement and testing, as well as in medical technology. The simple, exceptionally user-friendly assembly and removal of the crimp-clip contacts, even if they have already been assembled, distinguish the ODU-MAC Blue-Line as well; any installtion error of the module is prevented via one mechanical and two optical coding functions. The cost-effective and proven ODU contact technology — turned and slotted contacts — with at least 10,000 mating cycles, as well as the simple processing of the contacts and modules, underscores the economic aspect of the system.

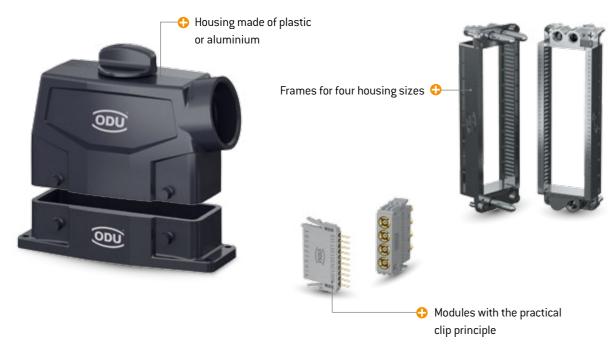
ECONOMICAL

- Easy assembly using crimp contacts that are clipped into the insulators
- Quick assembly and removal of the modules in the frame without using tools
- Removal of the contacts from the mating side

ROBUS

- Centering, guiding and grounding via guiding bushes and pins
- Numerous housing varieties in metal and plastic available with spindle and lever locking

FLEXIBLE


- 4 frame sizes (12, 18, 26, 37 units)
- Transmission of signals, power, high current, coax, compressed air, high-speed data transmission and fiber optic
- Additional option for the transmission of signals: separate PCB termination modules for an effective contact in the termination area
- Highest packing density via the 2.4 mm size (1 unit)

HIGH-PERFORMANCE

- > 10,000 mating cycles
- Up to 370 contacts per remove connector
- Proven ODU contact technology (turned/slotted contacts and contacts with lamella technology)

ALL-AROUND TALENT IN MODULAR DESIGN

The flexible modular design of the ODU-MAC Blue-Line enables the combination of the most varied types of transmission within a connector. Whether it is the transmission of signals, power, high current, coax, compressed air, high-speed data transmission or fiber optic — all of the contact inserts can be selected from the building-blocks and integrated into the individual connector solution. For the transmission of signals there is also the possibility of a simple contact using PCB-termination modules. The mating options are equally versatile.

THE INTELLIGENT WAY TO THE INDIVIDUAL CONNECTION

There are many possibilities available here for the most varied applications: For example, installed in a stable frame for rack-and-panel applications or automatic docking, or in one of the many housing varieties.

This results in an effective, compact and attractive overall connection with unparalleled functions. The confusion caused by many connections is a thing of the past — an ODU-MAC Blue-Line assembled according to your requirements is today's solution.

Learn more about individual configuration on the following pages or at: $\underline{www.odu\text{-}mac.com}$

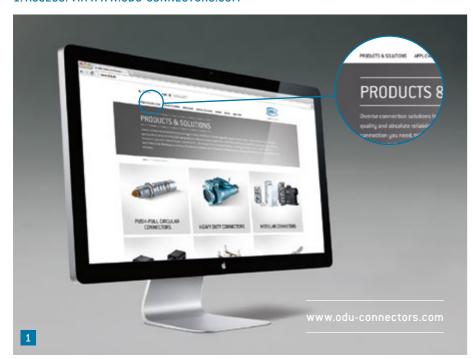
ODU-MAC[®] / Silver-Line / White-Line /

14

You Tube

Our ODU-MAC Silver-Line and White-Line offer a more comprehensive portfolio – request our catalog to find out more.

ADDITIONAL INFORMATION PROVIDED IN VIDEOS www.youtube.com/ODUSteckverbinder


Table of Contents Table of Contents

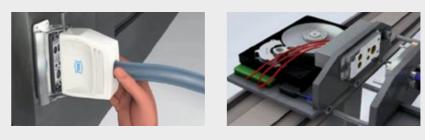
ODU-MAC® BLUE-LINE WEB CONFIGURATOR

The individual configuration of your ODU-MAC® Blue-Line connector.

The ODU-MAC Blue-Line Web-Configurator offers you the possibility of conveniently configuring your connector online according to your requirements. The Configurator guides you step-by-step through the various selection options and offers much additional information. There are two ways to access the ODU-MAC Blue-Line web configurator:

1. ACCESS: VIA WWW.ODU-CONNECTORS.COM

Entry via www.odu-connectors.com provides you with a great deal of product information and many application examples prior to configuration of your ODU-MAC Blue-Line.


Access to the configurator via the product category Modular Connectors.

2. ACCESS: DIRECTLY THROUGH WWW.ODU-MAC.COM

www.odu-mac.com takes you directly to the configuration interface, allowing you to start assembling your ODU-MAC immediately.

Videos explaining the functions of manual mating and automatic docking can be found under **Explanation** on the welcome page of the configurator at www.odu-mac.com.

PRODUCT INFORMATION

YOUR WAY TO AN INDIVIDUAL CONNECTION

How to configure your ODU-MAC® Blue-Line.

INDIVIDUAL REQUIREMENTS - INDIVIDUAL CONFIGURATION

With ODU-MAC Blue-Line, we offer a modular connector system configured to your requirements. This means that you always receive the appropriate hybrid connection.

SELECT & REQUEST OFFERS

You will receive a drawing and a detailed offer within one working day of submitting your request. The frames, modules and contacts are delivered individually and can be easily assembled (clipped in) on site.

We ask you to enquire directly about customized versions not covered by the standard.

For information to the configuration of your connector please refer to our website: www.odu-mac.com

FOR AUTOMATIC DOCKING

1ST STEP: FRAME SELECTION

Depending upon your requirements, you can choose 4 different frame sizes as a base for automatic docking.

2ND STEP: MODULE SELECTION

Choose from 18 different modules for transferring signal, power, high current, coax, compressed air, high-speed data transmission, fiber optic or PCB termination and assemble your ODU-MAC Blue-Line individually.

Module		
Signal	Shielded implementation/ high-speed connector	
Power	Fiber optic	
High current	PCB termination	
Coax	Blank modules	
Compressed air		

FOR MANUAL MATING

1ST STEP: LOCKING*

Select the type of lock in this first step. You have the choice between lever and spindle locking.

Spindle locking	Lever locking*
Spiriule locking	Lever locking

Transverse locking available on request.

 * Lever locking only in metal housing; spindle locking possible in plastic and metal housing.

2ND STEP: CONNECTOR HOUSING SELECTION

Depending upon the lock, choose the housing suited to your requirements. The following housings are available:

For spindle locking	For lever locking
Cable hood Plastic/metal housing	Cable hood
Cable hood XXL	Cable hood XXL
	Cable hood wide

3RD STEP: RECEPTACLE SELECTION

Depending upon the requirements for the receptacle and the selected connector housing, a wide variety of designs is available.

Cable hood	Cable hood XXL
Bulkhead mounted housing Plastic/metal housing	Bulkhead mounted housing
Surface mounted housing Plastic/metal housing	Surface mounted housing
Cable to cable hood	

The cable hood wide housing is only compatible with the bulkhead and surface mounted housing for cable hood wide housings.

4TH STEP: MODULE SELECTION

Choose from 18 different modules for transferring signal, power, high current, coax, compressed air, high-speed data transmission, fiber optic or PCB termination and assemble your ODU-MAC Blue-Line individually.

Modules	
See page <u>80</u>	

BEST CONNECTIONS FOR MANUAL MATING

Overview of housing with spindle locking.

In the case of spindle locking of the ODU-MAC Blue-Line, the housings can be equipped with an easy to operate precision locking spindle. This spindle enables easy closing and opening of the housing with a single turning movement. The mating and sliding forces overcome in this way ease handling significantly. Only 5 units of space are required for this purpose.

Especially in case of high connection frequency and limited space for locking, the use of precision locking is a preferred option.

Depending upon the application scenario, the mechanisms are designed for more than 10,000 locking cycles.

ADVANTAGES OF SPINDLE LOCKING

- Low profile less space for operation than lever locking
- Ease of use one-hand operation
- Ergonomic design easy single spindle knob
- Tested reliability developed for high locking cycles
- Fully enclosed internal mechanism prevents damage
- Replaceability can be replaced without removal of the hood or frame
- User friendly little force required for operation
- Precision material, design and tolerances assist service life of the overall system

Size	Units ¹	
2	18	
3	26	
4	37	

CABLE HOOD XXL²:

4 37	

FURTHER INFORMATION FROM PAGE 30.

CABLE HOOD WITH SIDE CABLE ENTRY P. 44 Connector housing for assembly on the cable. PLASTIC CABLE HOOD WITH SIDE CABLE ENTRY P. 36 Connector housing for assembly on the cable. CABLE HOOD XXL WITH SIDE M50 CABLE ENTRY P. 45 Connector housing with expanded assembly space and side M50 cable entry. **FULLY COMPATIBLE** PLASTIC SURFACE MOUNTED HOUSING P. 38 SURFACE MOUNTED HOUSING P. 47 For surface mounting on your device/ For surface mounting on your device/ wall with spindle locking and two side wall with spindle locking and two side cable entries. cable entries. **BULKHEAD MOUNTED** PLASTIC BULKHEAD HOUSING P. 46 **MOUNTED HOUSING P. 37** For mounting on device with For mounting on device with spindle locking. spindle locking.

¹5 units of space required for spindle. ² XXL housing only possible in metall version.

BEST CONNECTIONS FOR MANUAL MATING

Overview of housing with lever locking.

ODU-MAC Blue-Line with lever locking offers a wide variety of combination possibilities for manual mating. With the exception of the cable hood wide, all housings can be combined with one

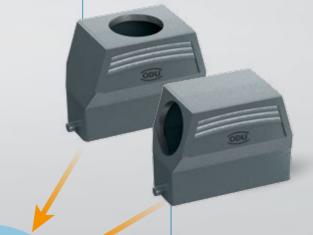
Appropriate frames in various sizes are available for use in the standard DIN EN 175301-801:2007 housing with lever. Size 4, for example, can receive up to 37 modules with a module width of 2.4 mm (1 unit), meaning that a total of 37 modules (37 units), or 370 contacts in the case of 10 contacts, can be accommodated. Size 6 of the cable hood wide can even accommodate up to 740 contacts.

Size	Units		
1	12		
2	18		
3	26		
4	37		
CABLE HOOD XXL:	CABLE HOOD XXL:		
4	37		
CABLE HOOD WIDE:			
-	F2		

FURTHER INFORMATION FROM PAGE 48.

74

(with and without cover).


CABLE HOOD WITH TOP CABLE ENTRY P. 48

Connector housing for assembly on the cable.

WITH TOP M50 CABLE ENTRY P. 49

CABLE HOOD XXL

Connector housing with expanded assembly space. For assembly on the cable.

CABLE HOOD WITH SIDE CABLE ENTRY P. 48

Connector housing for assembly on the cable.

FULLY COMPATIBLE CABLE HOOD XXL WITH SIDE M50 CABLE ENTRY P. 49

Connector housing with expanded assembly space.

For assembly on the cable.

BULKHEAD MOUNTED HOUSING P. 50

For mounting on your device with lever locking (with and without cover).

CABLE TO CABLE HOOD P. 54

For a flying cable to cable connection with lever locking and top cable entry.

SURFACE MOUNTED HOUSING P. 51

For surface mounting on your device/ wall with two side cable entries (with and without cover).

FRAMES FOR AUTOMATIC DOCKING

Overview of docking frames.

Depending on your requirements, you can choose between 4 different sizes and equip the frame with modules. There is always a perfect solution with the ODU-MAC Blue-Line.

If your requirements for a connector are not covered by the standard solutions, we also offer special customer-specific solutions.

The ODU-MAC Blue-Line is designed for 12 to 37 units (more upon request), meaning that 370 contacts can be installed if the 10 contacts module with a module width of 2.4 mm (1 unit) is used.

assembled

ADVANTAGES OF THE ODU-MAC BLUE-LINE FRAMES

Economical

Quick assembly and removal of the modules in the frame without using tools

Flexible

4 frame sizes (12, 18, 26, 37 units)
18 different modules: signal, power, high current, coax, compressed air, high-speed data transmission, fiber optic or PCB termination

- **High packing density** the 2.4 mm (1 unit) size
- High performance
- > 10,000 mating cycles
 Up to 370 contacts per connector

The frame is suitable for automatic docking. Tolerance compensation +/- 0.6 mm radial, min. 0.1 mm axial.

FURTHER INFORMATION FROM PAGE 72.

Table of Contents

BEST CONNECTIONS — THE CONTACT PRINCIPLE

ODU contacts meets the highest quality standards and enable safe and reliable connections. ODU provides highest performance contact technologies. In the turned contact category, we essentially distinguish between lamella and slotted contacts. The socket parts differ, but the pins are always the same and always solid.

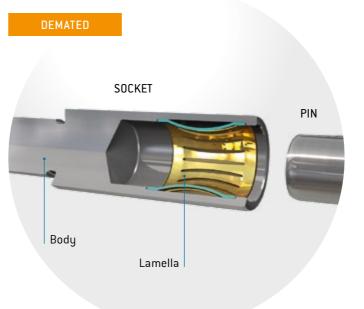

ODU TURNTAC®

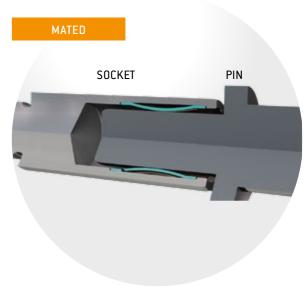
Contacts in slotted version.

The universal ODU TURNTAC contact system combines the very best contact properties and high quality with economic prices. By means of the optimum guidance and assembly in the ODU-MAC Blue-Line system, the longevity of 10,000 mating cycles and more can be achieved.

The contact principle can even be used in dimensions as tiny as 0.3 mm in diameter. Depending on the variety of slotted contact, the connector systems offers two or four contact areas.

ADVANTAGES


- > 10,000 mating cycles
- Economical solution
- The smallest dimensions are possible
- Individual contacts upon request


Standard contact principle for:		
Signal contacts	Ø 0.7–2 mm	
Power contact	Ø 3.5 mm	
Coax	2 and 4 contacs	
Shielded implementation	Signal contacts	

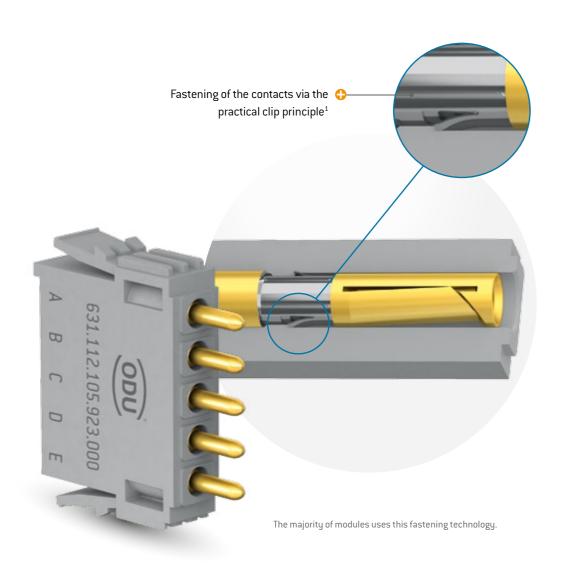
ODU LAMTAC®

Contacts with lamella technology.

The ODU LAMTAC consists of a turned carrier containing one or several stamped lamella belts fully automated process. The lamella's individual slats make for a multitude of contact points, thereby guaranteeing a high level of contact security and ease of connecting. The adapted contact force ensures low mating and demating forces, and a long service life with low wear. The mating cycles here are minimum 10,000.

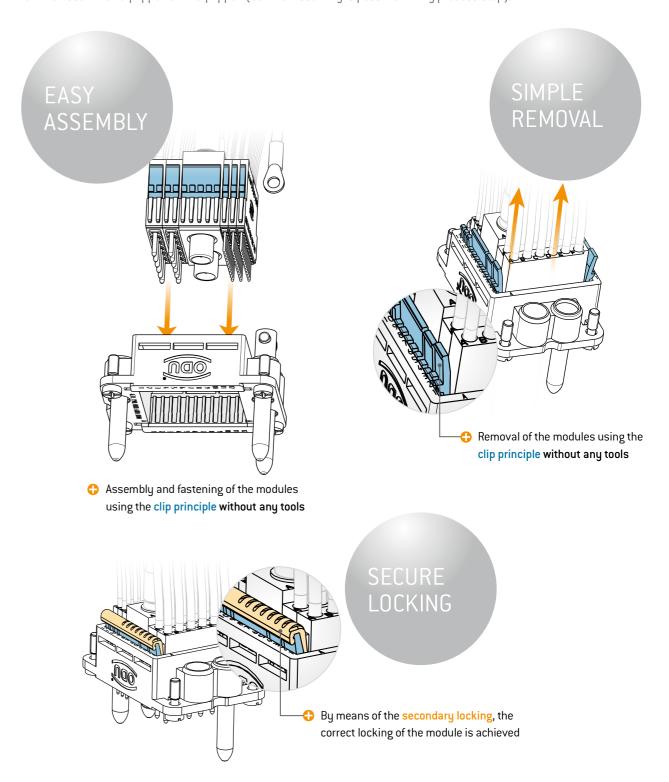
ADVANTAGES

- > 10,000 mating cycles
- High current-carrying capacity surge current capacity
- Low contact resistances
- Low mating and unmating forces
- High vibration and shock resistance
- Individual contacts upon request


Standard contact principle for:	
High-current contact	Ø 5-8 mm
Shielded implementation	Shielded transmission

CONTACT RETENTION WITH THE CLIP PRINCIPLE (STANDARD)

The photo below shows how the contact is fixed in the insulator. The contact is pushed from the termination area (rear insertion) into the insulator and locked in by a metal clip (barbed hook) snapping behind a flange. The contacts can be easily removed again at any time with a removal tool.


Compared with permanent connections, crimp technology allows replacement of contacts and easy repair. Voltage values can be increased by leaving contact positions free. Contact assembly can be performed independently of the insulator.

Not all modules are equipped with the clip principle, but removal is possible.

PERFECTLY ASSEMBLED EASE IN HANDLING

One mechanical and two optical coding functions of the modules simplify the assembly. Modules can be assembled equipped or unequipped (contact assembly is possible at any process step).

Please find detailed information in the ODU-MAC Blue-Line assembly instructions, Further information is available in the download area of our website.

¹ After clipping a new contact in three times, the module must be renewed.

CONFIGURE THE ODU-MAC® BLUE-LINE.
SIMPLY ONLINE AT: WWW.ODU-MAC.COM

MANUAL MATING

Spindle locking	. 32
Plastic housing	. <u>36</u> . <u>44</u>
Lever locking	48
Transverse locking	. 55
Housing with IP 68/IP 69 and EMC	56
Frame for housing	.60
Accessories	. <u>61</u>
Coding possibilities	.66

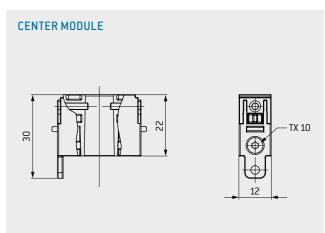
ODU-MAC®

<u>Contents</u>

SPINDLE LOCKING (VERSION 1)


Module for installation in ODU-MAC Blue-Line frames for housing. Quick-action locking system with over 10,000 locking cycles. Easy replacement of the front (replacement spindle set) enables a simple adjustment of the spindle geometry.

VERSION 1: FOR SOCKETS IN BULKHEAD MOUNTED OR SURFACE MOUNTED HOUSING AND PINS IN CABLE HOOD



TECHNICAL NOTES

- Min. of 10,000 locking cycles
- Space requirement 5 units (5 × 2.4 mm)
- Easy one-hand insertion/connection
- Force benefit by the insertion/connection
- Replaceable spindle screws
- Direct PE contact (fast-on)

Size	Part number WITHOUT CODING		Part number WIT	Part number WITH CODING ¹		
	Center module for bulkhead mounted, surface mounted hous- ing and cable-to-cable-hoods	Spindle locking for cable hoods	Center module for bulkhead mounted, surface mounted hous- ing and cable-to-cable-hoods	Spindle locking for cable hoods		mm
2 (52 mm high)	634.090.001.304.000	635.091.003.200.000	634.090.001.304.010	635.091.003.200.010	180°	46.5
2 (72 mm high)	634.090.001.304.000	635.091.001.200.000	634.090.001.304.010	635.091.001.200.010	180°	66.5
3/4	634.090.001.304.000	635.092.011.200.000	634.090.001.304.010	635.092.011.200.010	270°	72.5
3/4	634.090.001.304.000	635.092.011.200.003	634.090.001.304.010	635.092.011.200.013	360°	72.5
XXL	634.090.001.304.000	635.093.011.200.000	634.090.001.304.010	635.093.011.200.010	270°	90.5
XXL	634.090.001.304.000	635.093.011.200.003	634.090.001.304.010	635.093.011.200.013	360°	90.5

 $^{^{\}mbox{\tiny 1}}$ Coding pins are included in the standard scope of delivery.

REPLACEMENT SPINDLE SET 180°, 270° AND 360°

Part number replacement spindle set	Angle of rotation	Dimension _{mm}
615.090.104.249.000	180°	12
615.090.104.249.004	270°	16.3
615.090.104.249.005	360°	16.3

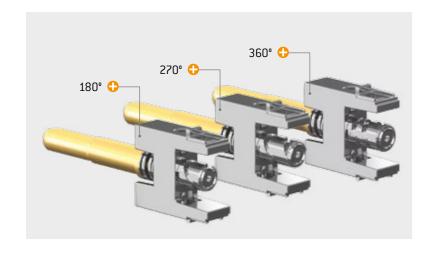
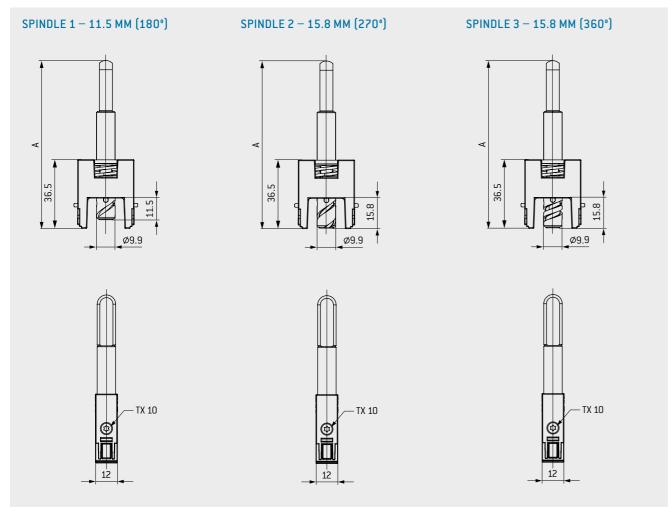
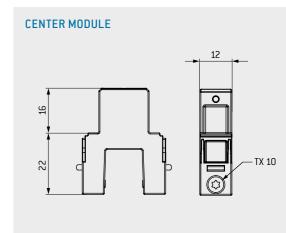

Depending on the case of application, a simple adjustment of the spindle geometry is possible using the replacement spindel set. $\frac{1}{2} \left(\frac{1}{2} \right) = \frac{1}{2} \left(\frac{1}{2} \right) \left(\frac{1$

Table of Co

SPINDLE LOCKING (VERSION 2)


Module for installation in ODU-MAC Blue-Line frames for housing. Quick-action locking system with over 10,000 locking cycles. Easy replacement of the front (replacement spindle set) enables a simple adjustment of the spindle geometry.

VERSION 2: FOR PINS IN BULKHEAD MOUNTED OR SURFACE MOUNTED HOUSING AND SOCKETS IN CABLE HOOD (REVERSED GENDER)



TECHNICAL NOTES

- Min. of 10,000 locking cycles
- Space requirement 5 units (5 × 2.4 mm)
- Easy one-hand insertion/connection
- Force benefit by the insertion/connection
- Replaceable spindle screws
- Spindle with coding function available upon request

Size	Part number WIT	HOUT CODING	Angle of rotation	Dim. A
	Center module for bulkhead mounted, surface mounted housing and cable-to-cable-hoods	Spindle locking for cable hoods		mm
2 (52 mm high)	634.090.002.304.000	635.091.004.200.000	180°	63.5
2 (72 mm high)	634.090.002.304.000	635.091.002.200.000	180°	83
3/4	634.090.002.304.000	635.092.012.200.000	270°	89.1
3/4	634.090.002.304.000	635.092.012.200.003	360°	89.1
XXL	634.090.002.304.000	635.093.012.200.000	270°	107.1
XXL	634.090.002.304.000	635.093.012.200.003	360°	107.1

REPLACEMENT SPINDLE SET 180°, 270° AND 360°

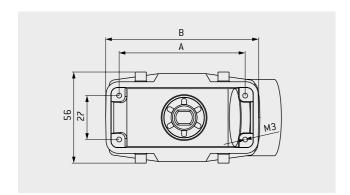
Part number replacement spindle set	Angle of rotation	Dimension _{mm}
615.090.104.249.000	180°	12
615.090.104.249.004	270°	16.3
615.090.104.249.005	360°	16.3

Depending on the case of application, a simple adjustment of the spindle geometry is possible using the replacement spindle set.

Table of Contents

PLASTIC CABLE HOOD

Plastic cable hood for assembly on cable and side cable entry.


SPINDLE LOCKING

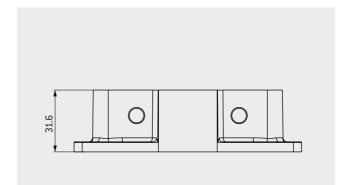
TECHNICAL DATA

Black (RAL 9005) Color of housing Plastic PA6 GF Material IP 50 Protection class¹

IP 65 on request -40 °C to +125 °C Operating temperature see page <u>61</u> Cable clamp Number of locking cycles see from page 32

Size	Part number	Dim. A	Dim. B	Dim. C	Dim. M	Part number protective cover
		mm	mm	mm	cable entry	(see page <u>40</u>)
2	613.091.514.908.308	57	74	72.5	M32	491.097.613.908.001
3	613.092.514.908.308	77.5	94	76.5	M40	492.097.613.908.001
4	613.093.514.908.308	104	121	76.5	M40	493.097.613.908.001

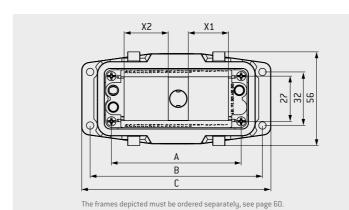
REDUCTION OF M40 TO M32; SEE PAGE 61.

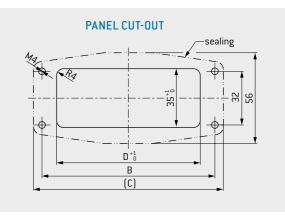

 1 IEC 60529:2013 (VDE 0470-1:2014) (Depends on the cable clamp(s) and spindle type used).

PLASTIC BULKHEAD MOUNTED HOUSING

For assembly of your device with spindle locking.

SPINDLE LOCKING





TECHNICAL DATA

Black (RAL 9005) Color of housing Plastic PA6 GF Material IP 50 Protection class¹

IP 65 on request -40 °C to +125 °C Operating temperature Sealing NBR; sealing material

Size	Part number	Dim. A	Dim. B	Dim. C	Dim. D panel cut-out mm	X1 Units 2.4 mm	X2 Units 2.4 mm	Part number protective cover (see page <u>39</u>)
2	612.091.010.908.000	57	83	93	67	6	7	491.097.612.908.001
3	612.092.010.908.000	77.5	103	114	87	10	11	492.097.612.908.001
4	612.093.010.908.000	104	130	140	114	16	16	493.097.612.908.001

 1 IEC 60529:2013 (VDE 0470-1:2014) (Depends on the spindle type used).

HOUSING

PLASTIC SURFACE MOUNTED HOUSING

For surface mounting on your device/wall with two side cable entries.

SPINDLE LOCKING

The frames depicted must be ordered separately, see page 60.

TECHNICAL DATA

Sealing

Cable clamp

Black (RAL 9005) Color of housing Plastic PA6 GF Material IP 50 Protection class¹

> IP 65 on request -40 °C to +125 °C

Operating temperature NBR; sealing material see page 61

Size Part number Dim. B Dim. C Dim. D Dim. M Part number protective cover Units 2.4 mm (see page <u>39</u>) 612.091.020.908.000 491.097.612.908.001 94 81.5 6 7 M32 612.092.020.908.000 492.097.612.908.001 77.5 105 117 81.5 10 11 M40 612.093.020.908.000 104 132 144 81.5 16 16 M40 493.097.612.908.001

REDUCTION OF M40 TO M32; SEE PAGE 61.

 1 IEC 60529:2013 (VDE 0470-1:2014) (Depends on the cable clamp(s) and spindle type used).

PLASTIC PROTECTIVE COVER

For bulkhead and surface mounted housing with lanyard.

Size	Part number	Dim. A
		mm
2	491.097.612.908.001	74
3	492.097.612.908.001	94
4	493.097.612.908.001	121

TECHNICAL DATA

Color of housing Material Protection class¹ Operating temperature Locking

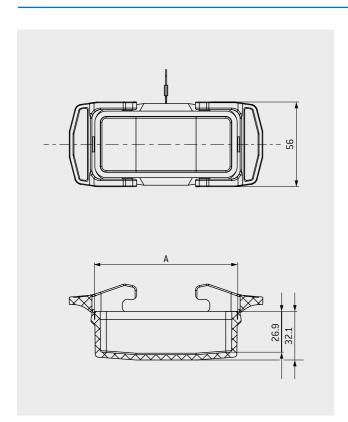
Plastic PA6 GF IP 65 -40 °C to +125 °C

Black (RAL 9005)

via the side-bar locking included in

the delivery

Size	Part number	Dim. A
		mm
2	491.097.612.908.001	74
3	492.097.612.908.001	94
4	493.097.612.908.001	121


¹ IEC 60529:2013 (VDE 0470-1:2014)

PLASTIC PROTECTIVE COVER

FOR YOUR NOTES

For cable hood with lanyard.

Size	Part number	Dim. A
		mm
2	491.097.613.908.001	74
3	492.097.613.908.001	94
4	493.097.613.908.001	121

TECHNICAL DATA

Color of housing Material Protection class¹ Operating temperature

Sealing Locking

Black (RAL 9005) Plastic PA6 GF IP 65

-40 °C to +125 °C NBR; sealing material

via the side-bar locking included in

the delivery

¹ IEC 60529:2013 (VDE 0470-1:2014)

NUAL MATING

INFORMATION ON PLASTIC HOUSING

Plastic housing is primarily used for applications in which a high degree of chemical resistance is required. The glass-fiber reinforced plastic housing reduces the weight and impresses in mechanical robustness.

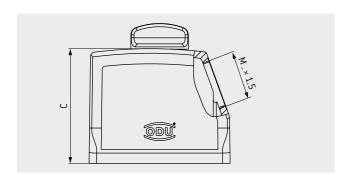
In the case of plastic housings in the ODU-MAC Blue-Line, the proven ODU spindle technology with a minimum of 10,000 locking cycles is used, having good ergonomic properties and thereby greatly simplifying the mating for the user. An additional grounding of the plastic housing is unnecessary, due to the antistatic, thermoplastic housing.

The plastic housing thereby represents a technological and economical enhancement of the housing varieties.

Medium	Material PA6 + GF			
	Resistant	With limited resistance		
Ammonia,	•			
10% aqueous solution				
Ammonia gas	At room temperature	At 100 °C		
Ammonium carbonate	•			
Ammonium chloride	•			
Aniline		•		
Asphalt	•			
Beer	•			
Butane gas	•			
Cooking salt, aqueous solution	•			
Copper sulphate, 10% aqueous solution	•			
Cresol solution		•		
Cresylic acid		•		
Cyclohexane	•			
Diesel	•			
Diluted glycerol	•			
Diluted glycol	•			
Diluted phenol		•		
Dioctylphthalate	•			
Ethyl alcohol, not denatured	•			
Fruit juices	•			
Glycerol	•			
Heptane	•			
Hexane	•			
Hydrogen sulphide	Gaseous	Diluted solution		
Ink	•			
Isopropyl + ethanol	•			
Isopropyl alcohol	•			
Lactic acid	•			
Linseed oil	•			
Lubricating oil	•			
Mercury	•			
Methyl alcohol, diluted 50%	•			
Mineral oil	•			
Mineral-based oil	•			
Moth balls	•			
Motor oil	•			
n-Butanol	•			
Naphthalene	•			
Octane	•			

Medium	Material PA6 + GF			
	Resistant	With limited resistance		
Oleic acid	•			
Paraffin oil	•			
Petrolium	•			
Potassium carbonate	•			
Potassium chloride	•			
Potassium iodide	•			
Potassium nitrate	•			
Potassium sulphate	•			
Regular grade petrol	•			
Seawater	•			
Silicone oil	•	> 100 °C		
Soap solution	•			
Sodium bicarbonate	•			
Sodium bisulfate, aqueous solution	•			
Sodium carbonate	•			
Sodium chlorate	•			
Sodium chloride	•			
Sodium hydroxide 12.5%	At room temperature			
Sodium nitrate	•			
Sodium nitrite		•		
Sodium perborate	•			
Sodium phosphate	•			
Sodium silicate	•			
Sodium sulphate	•			
Sodium sulphide	•			
Sodium thiosulphate	•			
Solution for developing photos	•			
stearic acid	•			
Stearic acids	•			
Sulphur	•			
Sulphur dioxide		•		
Tallow	•			
Tar	•			
Tartaric acid	•			
Transformer oil	•			
Urea, diluted	•			
Urine	•			
Vegetable oil	•			
Water	•			

This list represents an abstract of the chemical resistance of the plastic housing. Please contact the ODU team if you have any further questions. They will happy to assist you.


MANUAL MATING

CABLE HOOD

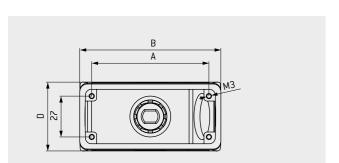
Connector housing for assembly on the cable with side cable entry.

SPINDLE LOCKING

TECHNICAL DATA

Color of housing Gray (standard, similar to RAL 7001)

or white (similar to RAL 9010)


Aluminium die casting Material Protection class¹

IP 50 IP 65 on request

-40 °C to +125 °C Operating temperature Cable clamp see page 61

Number of locking cycles see from page 32

for PG clamp see page 62


Size	Part number A Color of housing gray/ spindle knob black	Part number B Color of housing white spindle knob white	Part number C Color of housing white spindle knob black	Dim. A	Dim. B	Dim. C	Dim. D	Dim. M Cabel entry	Part number Protective cover (see page <u>64)</u>
2	613.091.513.644.208	613.091.513.653.203	-	57	73	52	43	M25	491.097.613.644.000
2	613.091.514.644.208	613.091.514.653.203	613.091.514.653.208	57	73	72	43		491.097.613.644.000
3	613.092.514.644.208	613.092.514.653.203	613.092.514.653.208	77.5	93.5	76	45.5	M32	492.097.613.644.000
	613.093.514.644.208	613.093.514.653.203	613.093.514.653.208	104	120	76	45.5		493.097.613.644.000
4	On request	On request	613.093.515.653.008	104	120	76	45.5	M40	493.097.613.644.000

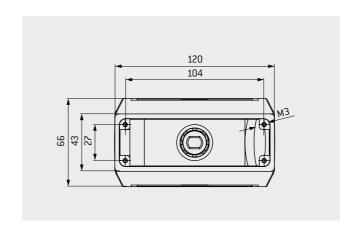
CABLE HOOD XXL

Connector housing for assembly on the cable. With expanded assembly space and side M50 cable entry.

SPINDLE LOCKING

TECHNICAL DATA

Gray (similar to RAL 7001) Color of housing


White on request

Aluminium die casting Material

IP 50 Protection class¹

IP 65 on request Operating temperature -40 °C to +125 °C Cable clamp see page 61

Number of locking cycles see from page 32

Size	Part number	Dim. M	Part number protective cover
	Color of housing gray/spindle knob black	Cable entry	(see page <u>64)</u>
4	613.093.516.644.208	M50	493.097.613.644.000

¹ IEC 60529:2013 (VDE 0470-1:2014) (Depends on the cable clamp(s) and spindle type used).

BULKHEAD MOUNTED HOUSING

For mounting on the device.

SPINDLE LOCKING

ODU

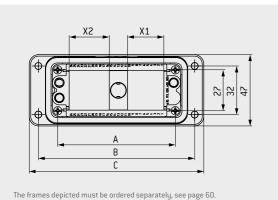
TECHNICAL DATA

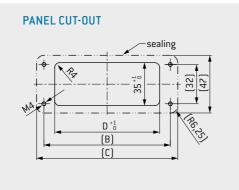
Gray (standard, similar to RAL 7001) Color of housing

or white (similar to RAL 9010)

Aluminium die casting Material IP 65

Protection class¹


-40 °C to +125 °C Operating temperature


(short duration) $-40\,^{\circ}\text{C}$ to $+85\,^{\circ}\text{C}$

(operating)

NBR; sealing material, FKM on request Sealing

(higher temperature range)

Size	Part number A	Part number B	Dim. A	Dim. B	Dim. C	Dim. D Panel cut-out	X1	Х2
	Color of housing gray	Color of housing white	mm	mm	mm	mm	Units 2.4 mm	Units 2.4 mm
2	612.091.010.644.000	612.091.010.653.000	57	83	95	65.2	6	7
3	612.092.010.644.000	612.092.010.653.000	77.5	103	115	85.5	10	11
4	612.093.010.644.000	612.093.010.653.000	104	130	143	112.2	16	16

1 IEC 60529:2013 (VDE 0470-1:2014) (Depends on the spindle type used).

SURFACE MOUNTED HOUSING

For surface mounting on your device/wall with two side cable entries.

SPINDLE LOCKING

(DDU)

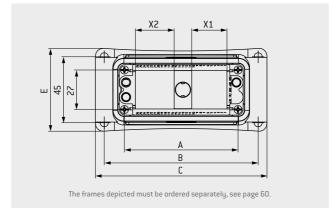
TECHNICAL DATA

Gray (standard, similar to RAL 7001) Color of housing

white on request

Aluminium die casting Material

IP 65 Protection class¹


-40 °C to +125 °C (short duration) Operating temperature

-40 °C to +85 °C (operating)

Sealing NBR; sealing material, FKM on request (higher temperature range)

Cable clamp see page 61

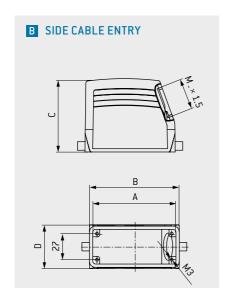
for PG clamp see page <u>62</u> Adapter

Size	Part number A	Part number B	Dim. A	Dim. B	Dim. C	Dim. D	Dim. E	X1	Х2	Dim. M
	Color of housing gray	Color of housing white	mm	mm	mm	mm	mm	Units 2.4 mm	Units 2.4 mm	Cable entry
2	612.091.025.644.102	612.091.025.653.102	57	82	92.5	74	55.5	6	7	M32
3	612.092.025.644.102	612.092.025.653.102	77.5	105	117	84	56.5	10	11	M32
4	612.093.025.644.102	612.093.025.653.102	104	132	144	84	57.5	16	16	M32

 $^{^{1}}$ IEC 60529:2013 (VDE 0470-1:2014) (Depends on the cable clamp(s) and spindle type used).

MANUAL MATING

CABLE HOOD


Connector housing for assembly on the cable. With straight and side cable entry.

A TOP CABLE ENTRY

TECHNICAL DATA

Color of housing Gray (standard

similar to RAL 7001) Aluminium die casting Material

Protection class¹

in mated condition Operating temperature -40 °C to +125 °C

Cable clamp see page 61 for PG clamp Adapter

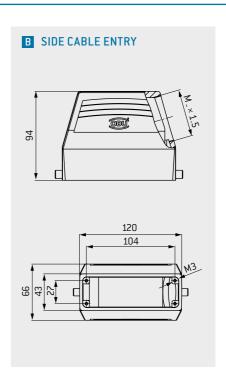
see page 62

With lever a locking minimum of 5,000 locking cycles are possible with lubrication. Up to 500 mating cycles there is no lubrication required.

Size	Part number A	Part number B	Dim. A	Dim. B	Dim. C	Dim. D	Dim. M	Part number protective cover
	Top cable entry	Side cable entry	mm	mm	mm	mm	Cable entry	(see page <u>64</u>)
1	490.214.450.644.102	490.414.450.644.102	44	60	52	43	M25	490.097.500.644.000
1	490.215.450.644.102	490.415.450.644.102	44	00	72	43	M32	450.057.300.044.000
2	491.214.450.644.102	02 491.414.450.644.102		73	52	43	M25	491.097.212.644.000
۷	491.215.450.644.102	491.415.450.644.102	3r	1.3	72	43	M32	451.057.212.044.000
3	492.215.450.644.102	492.415.450.644.102	77.5	93.5	76	45.5	M32	492.097.214.644.000
4	493.215.450.644.102	493.415.450.644.102	404	120	70	45.5	M32	493.097.214.644.000
4	493.217.550.644.000	493.417.550.644.000	104	120	76	76 45.5	M40	493.091.214.644.000

CABLE HOOD XXL

Connector housing for assembly on the cable. With expanded assembly space as well as side and top M50 cable entry.



LEVER LOCKING

A TOP CABLE ENTRY **OU** 120 104

TECHNICAL DATA

Color of housing Gray (standard

similar to RAL 7001) Aluminium die casting Material

Protection class¹ IP 65

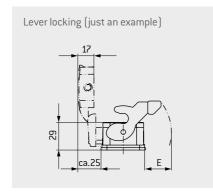
in mated condition

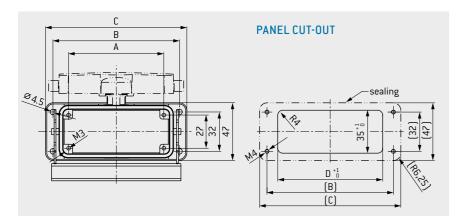
Operating temperature -40 °C to +125 °C

Cable clamp see page 61

With lever a locking minimum of 5,000 locking cycles are possible with lubrication. Up to 500 mating cycles there is no lubrication required.

Size	Part number A	Part number B	Dim. M	Part number protective cover
	Top cable entry	Side cable entry	Cable entry	(see page <u>64</u>)
4	493.218.550.644.000	493.419.550.644.000	M50	493.097.214.644.000


BULKHEAD MOUNTED HOUSING


For mounting on the device.

LEVER LOCKING

TECHNICAL DATA

Sealing

Gray (standard Color of housing

similar to RAL 7001) Material Aluminium die casting

Protection class¹

in mated condition

Operating temperature -40 °C to +125 °C

(short duration) -40 °C to +85°C

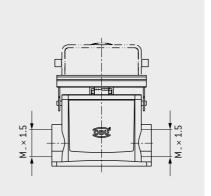
(operating)

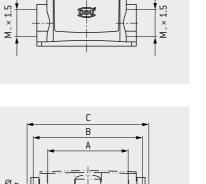
NBR; sealing material FKM on request (higher temperature

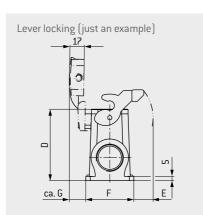
range)

With lever a locking minimum of 5,000 locking cycles are possible with lubrication. Up to 500 mating cycles there is no lubrication required.

Size Part number A Part number B Dim. A Dim. B Dim. E Dim. D 490.130.400.644.000 490.131.400.644.000 44 70 82 52.2 ≈ 22 57 491.130.400.644.000 491.131.400.644.000 83 95 ≈ 27 65.2 492.130.400.644.000 492.131.400.644.000 77.5 103 115 85.5 ≈ 28 493.130.400.644.000 493.131.400.644.000 130 143 112.2 ≈ 28


SURFACE MOUNTED HOUSING


For surface mounting on your device/wall with two side cable entries.


LEVER LOCKING

TECHNICAL DATA

Sealing

Gray (standard Color of housing

similar to RAL 7001) Material Aluminium die casting

IP 65 Protection class¹

in mated condition

Operating temperature -40 °C to +125 °C

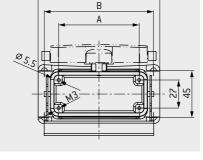
(short duration)

-40 °C to +85 °C

(operating)

NBR; sealing material

FKM on request


(higher temperature

range)

for PG clamp Adapter

see page <u>62</u>

With lever a locking minimum of 5,000 locking cycles are possible with lubrication. Up to 500 mating cycles there is no lubrication required.

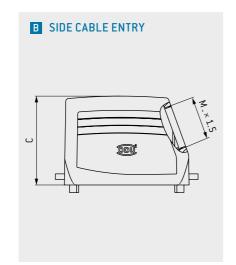
Size	Part number A	Part number B	Dim. A	Dim. B	Dim. C	Dim. D	Dim. E	Dim. F	Dim. G	Dim. M
	Without protective cover	With protective cover	mm	Cable entry						
1	490.133.450.644.102	490.135.450.644.102	44	70	82	74	≈ 17	55.5	20	
2	491.133.450.644.102	491.135.450.644.102	57	82	92.5	74	≈ 23	55.5	20	W22
3	492.133.450.644.102	492.135.450.644.102	77.5	105	117	84	≈ 23	56.5	20	M32
4	493.133.450.644.102	493.135.450.644.102	104	132	144	84	≈ 22	58	19	

M40 CABLE ENTRY AVAILABLE UPON REQUEST.

 1 IEC 60529:2013 (VDE 0470-1:2014) (Depends on the base and hood cable clamps used).

 $^{^{1}}$ IEC 60529:2013 (VDE 0470-1:2014) (Depends on the hood cable clamp(s) used).

CABLE HOOD WIDE


With straight and side cable entry for double contact arrangement on the frame.

LEVER LOCKING

A TOP CABLE ENTRY

TECHNICAL DATA

Color of housing Gray (standard,

similar to RAL 7001)

Aluminium die casting Material

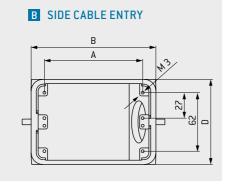
Protection class¹

in mated condition

Operating temperature without housing sealing:

 $-40\,^{\circ}\text{C}$ to $+125\,^{\circ}\text{C}$

Housing suitable for two standard frames size 3 or 4.


 $2 \times \text{size } 3 = \text{size } 5$

 $2 \times \text{size } 4 = \text{size } 6$

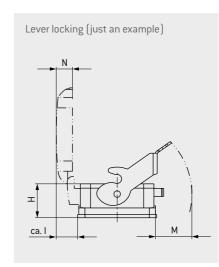
With lever a locking minimum of 5,000 locking cycles are possible with lubrication. Up to 500 mating cycles there is no lubrication required.

A TOP CABLE ENTRY

52

Size Part number A Part number B Dim. A Dim. B Dim. C Dim. D Dim. M 494.215.550.644.000 494.415.550.644.000 79 82.5 77.5 94 M40 495.215.550.644.000 495.415.550.644.000 104 132 94 90 M50

¹ IEC 60529:2013 (VDE 0470-1:2014) (Depends on the cable clamp(s) used).


BULKHEAD MOUNTED HOUSING FOR CABLE HOOD WIDE

For mounting on the device.

LEVER LOCKING

TECHNICAL DATA

Sealing

Gray (standard Color of housing

similar to RAL 7001) Aluminium die casting Material

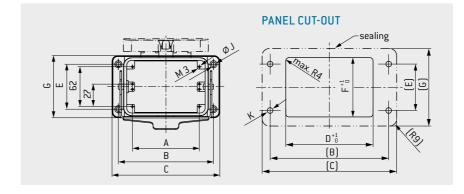
IP 65 Protection class¹

in mated condition

Operating temperature -40 °C to +125 °C

(short duration)

-40 °C to +85 °C


(operating)

NBR; sealing material

FKM on request (high-

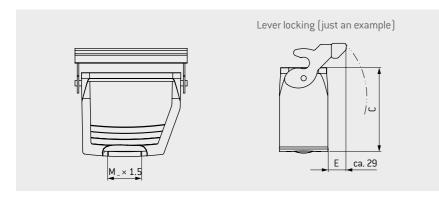
er temperature range)

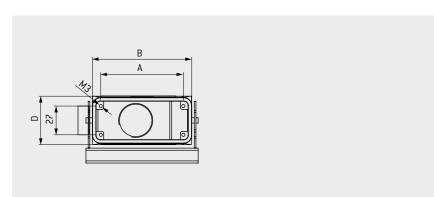
With lever a locking minimum of 5,000 locking cycles are possible with lubrication. Up to 500 mating cycles there is no lubrication required.

Size	Part number A	Part number B	Dim. A	Dim. B	Dim. C	Dim. D	Dim. E	Dim. F	Dim. G	Dim. H	Dim. I	Dim. J	Dim. K	Dim. L	Dim. M	Dim. N
	Without protective cover	With protective cover	mm													
5	494.130.500.644.000	494.131.500.644.000	77.5	110	127	79	65	74	89	38	≈ 23	5.5	M5	7	31	17
6	495.130.500.644.000	495.131.500.644.000	104	148	168	117	70	80	96.7	41.5	≈ 26	7	М6	12	43	20

¹ IEC 60529:2013 (VDE 0470-1:2014) (Depends on the hood cable clamp(s) used).

₩


MANUAL MATING


CABLE TO CABLE HOOD

With top cable entry. For a flying cable to cable connection.

LEVER LOCKING

TECHNICAL DATA

Material

Sealing

Cable clamp

To build a cable to cable connection. Suitable for use with cable hoods (page 48).

Color of housing Gray (standard

similar to RAL 7001)
Aluminium die casting

Protection class¹ IP 65

in mated condition

Operating temperature $-40 \,^{\circ}\text{C}$ to $+125 \,^{\circ}\text{C}$ (short duration)

-40 °C to +85 °C

(operating)

NBR; sealing material FKM on request (high-

er temperature range)

see page <u>61</u>

Adapter for PG clamp

see page <u>62</u>

With lever a locking minimum of 5,000 locking cycles are possible with lubrication. Up to 500 mating cycles there is no lubrication required.

Size	Part number	Dim. A	Dim. B	Dim. C	Dim. D	Dim. M	Part number protective cover gray
		mm	mm	mm	mm	Cable entry	(see page <u>64</u>)
1	490.331.450.644.102	44	60	75	43		490.097.500.644.001
2	491.331.450.644.102	57	73	75	43	waa	491.097.133.644.000
3	492.331.450.644.102	77.5	93.3	79	45.5	M32	492.097.133.644.000
4	493.331.450.644.102	104	120	79	45.5		493.097.133.644.000

M40 CABLE ENTRY AVAILABLE UPON REQUEST.

 1 IEC 60529:2013 (VDE 0470-1:2014) [Depends on the hood cable clamp(s) used).

TRANSVERSE LOCKING

Housing with side lockings. On request.

TECHNICAL DATA

Color of housing Gray (standard similar to RAL 7001)

Material Aluminium die casting
Protection class¹ IP 65 in mated condition

Operating temperature $-40 \,^{\circ}\text{C}$ to $+125 \,^{\circ}\text{C}$ (short duration) $-40 \,^{\circ}\text{C}$ to $+85 \,^{\circ}\text{C}$ (operating)

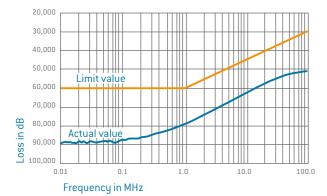
Sealing NBR; sealing material

With the lever a locking minimum 5,000 locking cycles are possible with lubrication. Up to 500 mating cycles

there is no lubrication required.

MANUAL MATING

CABLE HOOD IN IP 68/IP 69


For applications with extreme requirements. With 360° EMC shielding according to VG 95373-41:1997. On request.

INSERTION LOSS

TECHNICAL DATA

EMC model

Surface Electrically conductible

Sealing Inside

Housing Aluminium die casting alloy seawater resistance

Temperature range $-50\,^{\circ}\text{C}$ to $+120\,^{\circ}\text{C}$

Shielding attenuation ca. 65 dB

Corrosion protection model

Pressure tightness > 5 bar

Color Black (similar to RAL 9002)

Protection class¹ IP 68, IEC 60529:2013 (VDE 0470-1:2014)

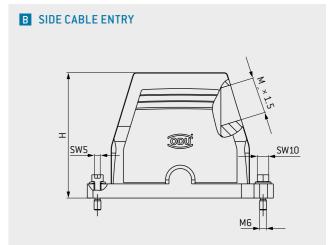
IP 69, IEC 60529:2013 (VDE 0470-1:2014)

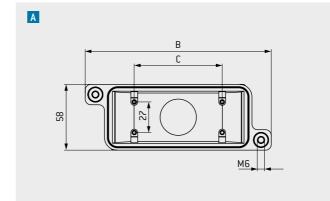
Screw locking

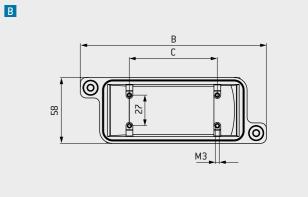
Application areas

Used in EMC shielded applications.

Housing construction according to IEC 61373:2010 (VDE 0115-106:2011)


Cat. 2 (bogie) from rail engineering.


Size	Part number A	Part number B	Dim. B	Dim. C	Dim. M	Dim. H
	Top cable entry	Side cable entry	mm	mm	mm	mm
1	490.260.550.641.000	490.261.550.641.000	132	44	M32	100.5
2	491.262.550.641.000	491.263.550.641.000	144	57	M32	100.5
3	492.262.550.641.000	492.263.550.641.000	164	77.5	M32	110.5
4	493.262.550.641.000	493.263.550.641.000	191	104	M40	110.5

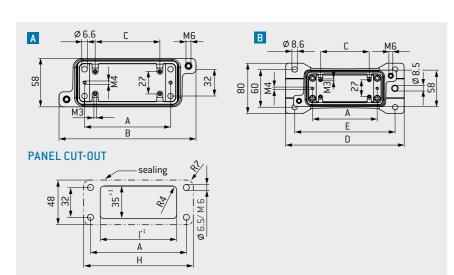

A TOP CABLE ENTRY

M_×1.5

SW10

 $^{^{1}}$ IEC 60529:2013 (VDE 0470-1:2014) [Depends on the hood cable clamp(s) used).

BULKHEAD MOUNTED- AND SURFACE MOUNTED HOUSING IN IP 68/IP 69


For applications with extreme requirements. With 360° EMC shielding according to VG 95373-41:1997. On request.

A BULKHEAD MOUNTED HOUSING

TECHNICAL DATA

EMC model

Surface Electrically conductible Sealing Inside protected Aluminium die Housing casting alloy seawater resistance -50 °C to +120 °C

Shielding attenuation ca. 65 dB

Corrosion protection model

Pressure tightness > 5 bar

(similar to RAL 9002)

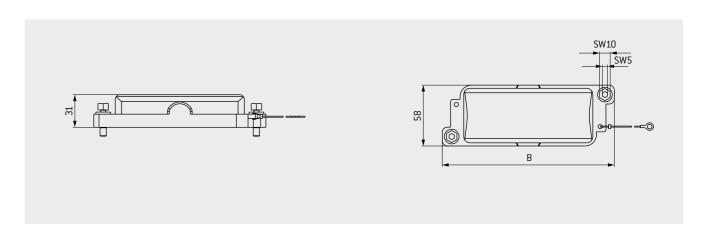
IP 68, IEC 60529:2013 Protection class¹

(VDE 0470-1:2014) IP 69, IEC 60529:2013 (VDE 0470-1:2014)

Sealing Conductive silicone

Application areas

Used in EMC shielded applications. Housing construction according to IEC 61373:2010 (VDE 0115-106:2011, bogie) from rail engineering.


Size	Part number	Part number	Dim. A	Dim. B	Dim. C	Dim. D	Dim. E	Dim. F	Dim. H	Dim. I	Dim. M
	Bulkhead mounted housing	Surface mounted housing	mm	Cable entry							
1	490.160.500.641.000	490.161.550.641.000	70	132	44	156	127	100.5	85	48	M32
2	491.161.500.641.000	491.162.550.641.000	83	144	57	169	140	100.5	98	60	M32
3	492.161.500.641.000	492.162.550.641.000	103	164	77.5	189	160	111.5	118	82	M32
4	493.161.500.641.000	493.162.550.641.000	130	191	104	216	187	111.5	145	108	M40

1 IEC 60529:2013 (VDE 0470-1:2014) (Depends on the base and hood cable clamps used).

PROTECTIVE COVER FOR BULKHEAD MOUNTED AND SURFACE MOUNTED HOUSING IN IP 68/IP 69

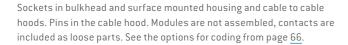
For applications with extreme requirements. With 360° EMC shielding according to VG 95373-41:1997. On request.

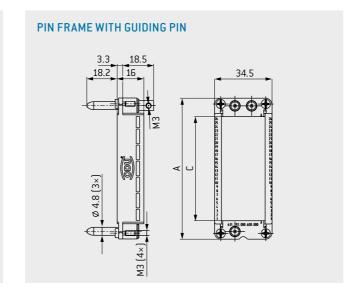
Size	Part number protective cover for bulkhead mounted and surface mounted housing with lanyard	Dim. B
		mm
1	490.060.500.641.000	132
2	491.060.500.641.000	144
3	492.060.500.641.000	164
4	493.060.500.641.000	191

ODU-MAC® BLUE-LINE FRAMES FOR HOUSING

With grounding for housing.

TECHNICAL DATA


- zinc diecasting, nickel-plated
- 1 unit = 2.4 mm


Included in the scope of delivery: secondary locking

Use and assembly, see p. 29.

SOCKET FRAME WITH GUIDING BUSHES

The same dimensions apply to the height of the contact pins as to the corresponding modules that are described.

Size	Part number Part number		Max. Units	Dim. A	Dim. B	Dim. C
	Socket frame	Pin frame	2.4 mm ¹	mm	mm	mm
1	630.190.000.600.000	631.190.000.600.000	12	51	44	12 × 2.4 = 28.8
2	630.191.000.600.000	631.191.000.600.000	18	64	57	18 × 2.4 = 43.2
3	630.192.000.600.000	631.192.000.600.000	26	84.5	77.5	26 × 2.4 = 62.4
4	630.193.000.600.000	631.193.000.600.000	37	111	104	37 × 2.4 = 88.8

Please note that when equipping size 5 and 6 housings two frames are required.

CABLE CLAMP AND REDUCING RING

CABLE CLAMP¹ FOR HOUSINGS ACCORDING TO IEC 62444:2010 (VDE 0619:2014)

TECHNICAL DATA

Material Körper PA

Sealing NBR; sealing material Protection class IP 68 to 5 bar Temperature range -40 °C to +100 °C

EMC clamp on request.

Part number	Thread	Color	Width across flats	Tight- ening torque	Cable diameter ^{mm}	
				Nm	min.	max.
027.825.060.130.007	M25 × 1.5		30	8	6	13
027.825.090.170.007	ME3 × 1.5		30	Ü	9	17
027.832.070.150.007	M32 × 1.5 Gra	C		10	7	15
027.832.110.210.007		Gray	36	10	11	21
027.840.190.280.007	$\text{M40} \times 1.5$		46	13	19	28
027.850.270.350.007	M50 × 1.5		55	15	27	35
027.825.060.130.003	M25 × 1.5	4.5	30	8	6	13
027.825.090.170.003	M25 × 1.5		30	0	9	17
027.832.070.150.003	M32 × 1.5	White	36	10	7	15
027.832.110.210.003	M32 × 1.3		30	10	11	21
027.840.190.280.003	$\text{M40}\times 1.5$		46	13	19	28
027.832.070.150.008	M32 × 1.5		36	10	7	15
027.832.110.210.008	M32 × 1.5	Black	30	10	11	21
027.840.190.280.008	M40 × 1.5		46	13	19	28

REDUCING RING FOR PLASTIC HOUSING

TECHNICAL DATA

Color Black (RAL 9005)
Material Plastic PA6 GF20
Protection class IP65

Temperature range −40 °C to +125 °C

Sealing NBR; sealing material

Part number	External thread	Internal thread
921.000.006.000.356	M40 × 1.5	M32 × 1.5

 $^{^1}$ If the configuration frame is not completely filled, use the blank modules (see page $\underline{124}).$

¹ Delivery doesn't contain cable clamp, but o-ring is enclosed with the housing.

ADAPTER RING, BLIND GROMMET AND LOCKNUT

FOR YOUR NOTES

ADAPTER RING FOR CABLE CLAMPS WITH PG THREAD

TECHNICAL DATA

Nickel-plated brass Material

Part number	External thread	Internal thread
921.000.006.000.254	M25 × 1.5	PG 21
921.000.006.000.255	M32 × 1.5	PG 29
921.000.006.000.267	M32 × 1.5	M40 × 1.5

BLIND GROMMET FOR SURFACE MOUNTED HOUSING

TECHNICAL DATA

Color Gray

Material PA fiber glass reinforced

Protection class

Temperature range -40 °C to +125 °C

NBR; sealing material

Part number	Thread
921.000.006.000.279	M25 × 1.5
921.000.006.000.268	M32 × 1.5
On request	M40 × 1.5
On request	M50 × 1.5

LOCKNUT FOR CABLE CLAMP

TECHNICAL DATA

Material

Part number	Thread
931.000.003.000.112	M32 × 1.5
931.000.003.000.113	M40 × 1.5

Nickel-plated brass

For fixing the cable clamp in the ODU-MAC strain relief housing .

MANUAL MATING

PROTECTIVE COVER

I NOTECTIVE COVE

For metal housing.

HOUSING

B

TECHNICAL DATA

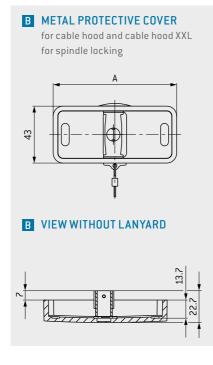
Color Gray (standard, similar to RAL 7001)

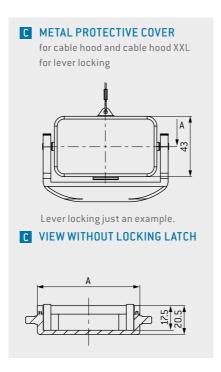
Protection class IP 65 in locked condition

Metal protective cover with locking latch (C)
Metal protective cover with bolt and lanyard (A)

Protection class IP 54 in locked condition

Metal protective cover with middle section for spindle locking


with lanyard (B)


Material Aluminium die casting (body)

Temperature range $-40\,^{\circ}\text{C}$ to +125 $^{\circ}\text{C}$

Sealing NBR; sealing material

A METAL PROTECTIVE COVER for bulkhead mounted, surface mounted housing and cable-tocable-hoods A VIEW WITHOUT LANYARD

Size	IP 65	IP 50	IP 65	Dim. A
	Part number A	Part number B	Part number C	
	Metal protective cover with bolt and lanyard	Metal protective cover for spindle locking with lanyard and middle section	Metal protective cover with locking latch	mm
1	490.097.500.644.001	-	490.097.500.644.000	60
2	491.097.133.644.000	491.097.613.644.001	491.097.212.644.000	73
3	492.097.133.644.000	492.097.613.644.001	492.097.214.644.000	93.5
4/XXL	493.097.133.644.000	493.097.613.644.001	493.097.214.644.000	120

PROTECTIVE TRANSPORT COVER AND SECONDARY LOCKING

HOUSING

TRANSPORT PROTECTIVE COVER FOR METAL HOUSING — for the protection of the assembled cable hood during transport.

TECHNICAL DATA

Material Plastic PP/antistatic
Color Black (similar to RAL 9002)

Size	Part number	Part number
	With carry lanyard	With carry lanyard
1	490.097.900.924.000	490.097.900.924.101
2	491.097.900.924.000	491.097.900.924.101
3	492.097.900.924.000	492.097.900.924.101
4/XXL	493.097.900.924.000	493.097.900.924.101

SECONDARY LOCKING FOR MODULES

TECHNICAL DATA

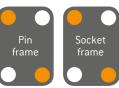
Material Thermoplastic, glass-fiber reinforced

Size	Part number — Only if a replacement is required!
1	631.000.001.923.190
2	631.000.001.923.191
3	631.000.001.923.192
4	631.000.001.923.000

¹The secondary locking is included in the standard scope of delivery

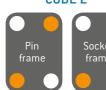
CODING OPTIONS FOR LEVER LOCKING

To prevent mismating.

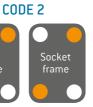

In order to prevent mismating, it is in some cases useful to provide the connection systems with a coding system.

Instead of cylinder screws, coding pins and coding sockets can be used in the ODU-MAC Blue-Line in the housing. ODU offers 16 different coding options. Standard frames do not include additional coding upon delivery. If several adjacent connectors are used, this can prevent mismating.

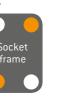
CODING OPTIONS

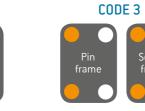

CODE 1

CODE 5

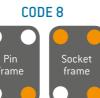

CODE 9

CODE 13



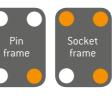

CODE 6

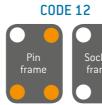
CODE 10

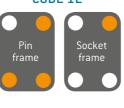

CODE 7

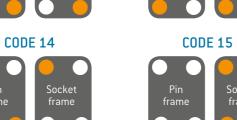
CODE 11

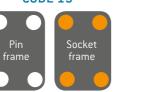
Socket frame

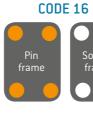


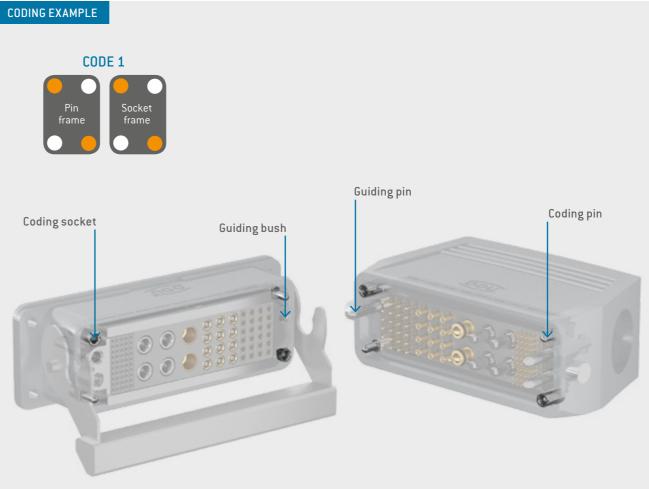





CODE 4







Frame	Part number	Cod	ing
	matching the frame no.	Part number pin	Part number socket
Pin	631.19X.000.600.000	631.090.301.700.000	630.090.302.700.000
Socket	630.19X.000.600.000	631.090.302.700.000	630.090.301.700.000

PART NUMBER BASIC TOOL, TORQUE SCREWDRIVER/1.2 NM: 598.054.002.000.000 PART NUMBER TOOL INSERT FOR CODING PIN: 598.054.203.000.000 PART NUMBER TOOL INSERT FOR CODING SOCKET: 598.054.107.000.000

An overview of all tools is on page 132.

= Coding pin = Coding socket

CODING OPTIONS FOR HOUSING WITH SPINDLE LOCKING

To prevent mismating.

In order to prevent mismating, it is in some cases useful to provide the connection systems with a coding system.

Instead of cylinder screws, coding pins and coding sockets can be used in the ODU-MAC Blue-Line in the housing. ODU offers 4 coding variations with these coding options in combination with spindle locking. Standard frames do not include additional coding upon delivery. If several adjacent connectors are used, this can prevent mismating.

Alternatively, if additional coding options are required, ODU offers an innovative option with the coded spindle of pages 70–71.

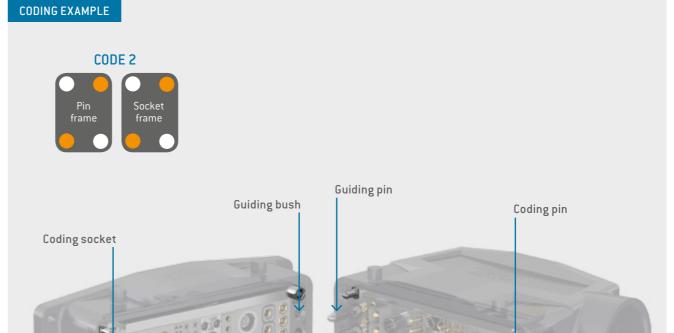
CODING OPTIONS

= Coding pin

= Coding socket

CODE 1

CODE 5



CODE 6

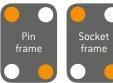
Frame	Part number	Cod	ing	
	matching the frame no.	Part number pin	Part number socket	
Pin	631.19X.000.600.000	631.090.301.700.000	630.090.302.700.000	
Socket	630.19X.000.600.000	631.090.302.700.000	630.090.301.700.000	

PART NUMBER BASIC TOOL, TORQUE SCREWDRIVER/1.2 NM: 598.054.002.000.000 PART NUMBER TOOL INSERT FOR CODING PIN: 598.054.203.000.000 PART NUMBER TOOL INSERT FOR CODING SOCKET: 598.054.107.000.000

An overview of all tools is on page 132.

CODING OPTIONS FOR CODED SPINDLE

To prevent mismating.


In order to prevent mismating, it is in some cases useful to provide the connection systems with a coding system.

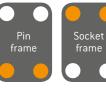
For this purpose, ODU has developed innovative coding to provide housing variation that is directly integrated into the spindle of the ODU-MAC. ODU provides up to six different coding options with the installation of 2 keying pins in the spindle locking and 2 closure plugs in the center module. If several adjacent connectors are used, this can prevent mismating.

CODING OPTIONS

CODE A

CODE B

CODE C

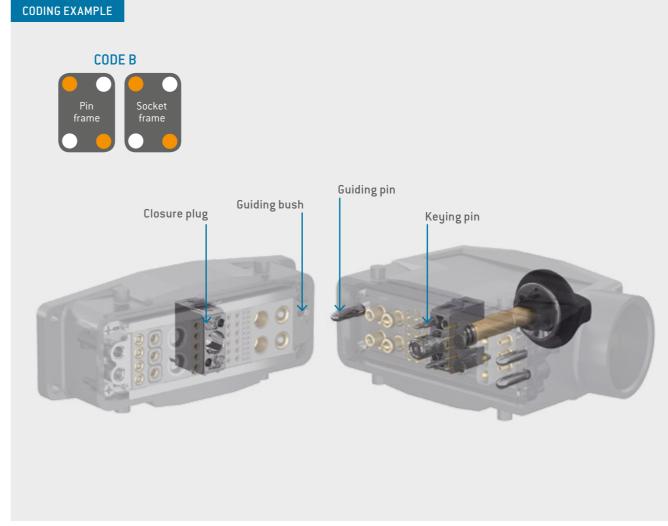


CODE D

CODEE

= Keying pin

= closure plug



Size	WITH CODIN	G¹	Angle of
	Part number Center module for bulkhead mounted, surface mounted housing and cable-to-cable-hoods	Part number Spindle locking for cable hoods	rotation
2 (52 mm high)	634.090.001.304.010	635.091.003.200.010	180°
2 (72 mm high)	634.090.001.304.010	635.091.001.200.010	180°
3/4	634.090.001.304.010	635.092.011.200.010	270°
3/4	634.090.001.304.010	635.092.011.200.013	360°
XXL	634.090.001.304.010	635.093.011.200.010	270°
XXL	634.090.001.304.010	635.093.011.200.013	360°

UNLT IF A REFLACEMENT IS REQUIRED	
Part number keying pin	Part number closure plug
	634 999 495 993 999
635.090.105.902.000	634.090.106.902.000

TORQUE SCREWDRIVER/0.9 NM FOR LEFT-HAND THREAD PART NUMBER BIT SLOT FOR THE ASSEMBLY OF THE SPINDLE CODING: 598.054.109.000.000

71

 $^{^{\}rm 1}\mbox{Keying pins}$ and closure plugs are included as loose parts.

² They are included in the standard scope of delivery.

CONFIGURE THE ODU-MAC® BLUE-LINE. SIMPLY ONLINE AT: WWW.ODU-MAC.COM

AUTOMATIC DOCKING

Requirements on the complete system	74
ODU-MAC® Blue-Line docking frames	76
ODU strain relief housing	. 77

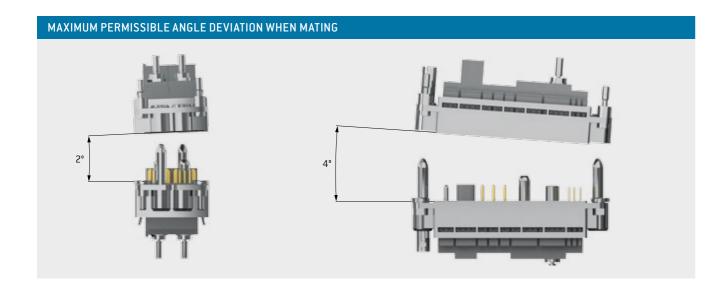
ODU-MAC®

Table of Conter

Table of Conten

DOCKING FRAME

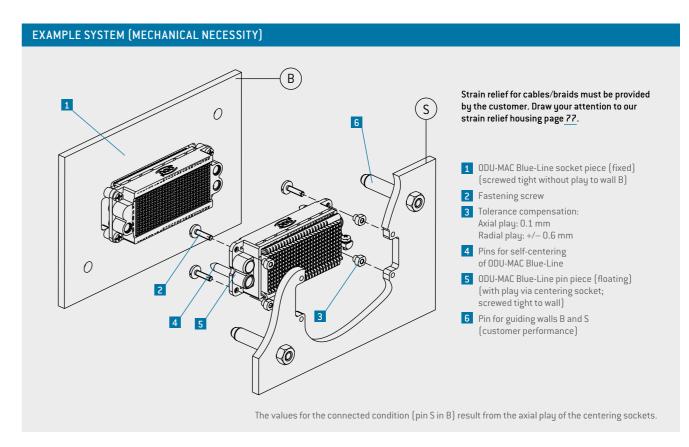
SYSTEM REQUIREMENTS AND TOLERANCES



High mating cycles and perfect transfer rates – in order to ensure these for automatic docking over the long term, the docking system must be a design consideration (e.g. centering systems).

Docking frame

Clean and smooth docking is secured by special guiding pins that are designed for the forces which guide the connector. Please note the mechanical requirements behind the design.


MAXIMUM PERMISSIBLE OFFSET + STANDARD GAP MEASURE IN MATED CONDITION (RADIAL PLAY) Gap measure max. 0-0.5 mm Gan measure max. 0-0.5 mmThe maximum permissible gap between socket and Frame Toleranz pin pieces is 0.5 mm as a standard. Extension with long contact pins is possible.

OUR TEAM IS HAPPY TO ANSWER ANY ENQUIRIES YOU MAY HAVE.

+/- 0,6 mm

YOU REQUIRE GREATER VARIETY? A MORE COMPREHENSIVE OFFER IS PROVIDED BY OUR ODU MAC® SILVER-LINE - THE SPECIALIST FOR AUTOMATIC DOCKING SOLUTIONS.

NOTE: AUTOMATIC DOCKING SYSTEMS

- The pin piece of the ODU-MAC Blue-Line is to be fixed with the accompanying centering sockets and has mounted floating
- The guiding system of the ODU-MAC Blue-Line provides no guiding hardware for the overall plug-in.
- The maximum permissible gap between socket and pin pieces is 0.5 mm as standard. Extension with long contact pins is possible.
- An alignment system (e.g. guide rails, etc.) is necessary to achieve high mating cycles. The max. permissible alignment error is, for example, less than +/- 0.6 mm radial for the ODU-MAC Blue-Line docking frame.
- Strain relief for the cables/braids must be provided by the customer or use our strain relief housing see page 77.

FAILURE TO OBSERVE THESE SPECIFICATIONS MAY RESULT IN DAMAGE.

ODU-MAC® BLUE-LINE DOCKING FRAMES

Standard solutions for docking applications (such as rack & panel).

TECHNICAL DATA

- Tolerance compensation: Axial play: 0.1 mm Radial play: +/-0.6 mm
- Pin piece (floating)

In the scope of delivery: secondary locking

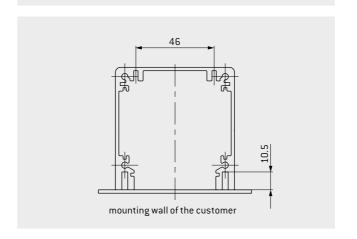
Use and assembly, see p. 29.

SOCKET FRAME WITH GUIDING BUSH PIN FRAME WITH GUIDING PIN PANEL CUT-OUT $\bigoplus \bigoplus \bigoplus \bigoplus$

Modules are not mounted, contacts are not fixed enclosed.


For the height of the contact pins the same dimensions are valid as described by the respective modules.

Size	Part number	Part number	Max. Units	Dim. A	Dim. B	Dim. C	Dim. D
	Socket frame	Pin frame	2.4 mm ¹	mm	mm	mm	mm
1	630.190.000.600.000	631.190.020.600.000	12	51	44	12 × 2.4 = 28.8	38
2	630.191.000.600.000	631.191.020.600.000	18	64	57	18 × 2.4 = 43.2	51
3	630.192.000.600.000	631.192.020.600.000	26	84.5	77.5	26 × 2.4 = 62.4	71.5
4	630.193.000.600.000	631.193.020.600.000	37	111	104	37 × 2.4 = 88.8	98


¹ If the configuration doesn't fill the frame completely, please use blank modules (see page 124).

ODU-MAC® BLUE-LINE STRAIN RELIEF HOUSING

The accessories for docking solutions.

APPLICATION EXAMPLE Additional M32 cable clamps can be placed by the customer.

¹ A higher protection class is possible for additional sealing of the housing.

TECHNICAL DATA

- Material: aluminium
- Operating temperature: -40 °C to +125 °C
- Protection class¹ can be adjusted individually
- Cable clamps, see page 61
- Locknut for cable clamp see page 62

CHARACTERISTICS

- Resistant and compact
- Protection of the termination area
- Individual strain-relief variations, cable entries as well as grounding connections
- Suitable for all ODU-MAC docking frames (additional lengths available on request)
- Optional fixing of the PCBs and components in the protected interior
- ODU logo included as a standard; customer logo can also be delivered upon request

ODU-MAC® BLUE-LINE STRAIN RELIEF HOUSING

The accessories for docking solutions.

COVER WITH HOLE COVER WITHOUT HOLE HOUSING SET INCLUDING COVER 1.5 [4] ODŲ. 70 - Optionally without logo For mounting on an existing mounting wall of the customer.

The set comprises a housing profile including 2 covers and corresponding fastening screws for assembly of the included cover. Fastening material for an existing mounting wall of the customer is not included in the scope of delivery.

Part number 2 × cover without hole	Part number 1 × cover with/1 × cover without hole	Part number 2 × cover with hole	Frame size	Dim. L
616.010.100.600.000	616.010.114.600.000	616.010.144.600.000	1–3	97
616.020.100.600.000	616.020.114.600.000	616.020.144.600.000	4	123

FOR YOUR NOTES

CONFIGURE THE ODU-MAC® BLUE-LINE.
SIMPLY ONLINE AT: WWW.ODU-MAC.COM

Overview	<u>82</u>
Signal	86
Power	94
High current	<u>96</u>
Coax	<u>100</u>
Compressed air and accessories	<u>106</u>
Shielded-implementation/high-speed connector	<u>110</u>
Fiber optic	<u>116</u>
PCB termination modules	<u>118</u>
Blank modules	<u>124</u>

ODU-MAC®

OVERVIEW OF ALL MODULES

MODULES

OVERVIEW OF ALL MODULES

	Modules	Description	Units/width	Features		Page
Signal		20 contacts Contact Ø: 0.7 mm	2 Units 4.8 mm	Highest packing density and Operating voltage ¹ Rated impulse voltage ¹ Max. continuous current ² Degree of pollution ¹ Mating cycles	pin protection 250 V 2,000 V 11 A for 0.38 mm ² 2 minimum 10,000	<u>86</u>
	A STATE OF THE PARTY OF THE PAR	10 contacts Contact Ø: 0.7 mm	1 Unit 2.4 mm	Highest packing density Operating voltage ¹ Rated impulse voltage ¹ Max. continuous current ² Degree of pollution ¹ Mating cycles	320 V 2,500 V 11 A for 0.38 mm ² 2 minimum 10,000	<u>88</u>
	DOC DOCUMENTS	6 contacts Contact Ø: 1.3 mm	Units 4.8 mm	Operating voltage ¹ Rated impulse voltage ¹ Max. continuous current ² Degree of pollution ¹ Mating cycles	400 V 2,500 V 19.5 A for 1 mm ² 2 minimum 10,000	<u>90</u>
	Porter of the second se	5 contacts Contact Ø: 2 mm	Junits 7.2 mm	Operating voltage ¹ Rated impulse voltage ¹ Max. continuous current ² Degree of pollution ¹ Mating cycles	630 V 2,500 V 33 A for 2,5 mm ² 2 minimum 10,000	<u>92</u>

146	3 contact
	Contact & 3.5 mm

Operating voltage¹ Rated impulse voltage1 Max. continuous current² Degree of pollution¹ Mating cycles

2,500 V 10,000 V 58 A for 6 mm² minimum 10,000

2 contacts for turned contacts with ODU LAMTAC $^{\circ}$ 3 $\operatorname{Contact} \varnothing:$

Operating voltage¹ Rated impulse voltage Degree of pollution¹ Mating cycles

400 V 4,000 V 108 A for 16 mm^2 minimum 10,000

	Modules	Description	Units/width	Features		Page
High current		2 contacts for turned contacts with ODU LAMTAC®3 Contact Ø: 8 mm	9 _{Units} 21.6 mm	Highest current Operating voltage ¹ Rated impulse voltage ¹ Max. continuous current ² Degree of pollution ¹ Mating cycles	400 V 3,000 V 150 A for 25 mm ² 2 minimum 10,000	<u>98</u>
	and the second					
	A P C D C D C D C D C D C D C D C D C D C	4 contacts for 50 Ω coax contacts	3 Units 7.2 mm	High packing density Frequency range Mating cycles	0-2.8 GHz minimum 10,000	<u>100</u>
Coax		2 contacts for 50 Ω coax contacts	5 Units 12 mm	Frequency range Mating cycles	0-4 GHz minimum 10,000	<u>102</u>
		2 contacts for 75 Ω coax contacts	5 Units 12 mm	Frequency range Mating cycles	0–2.7 GHz minimum 10,000	104
Compressed air	COO	2 contacts	Units 12 mm		max. 4 mm Push-in: max. 6 mm n 10,000	<u>106</u>

connector	2 contac
high-speed connector	1 contac

6 Units 14.4 mm

14.4 mm

minimum 10,000 Mating cycles Suitable for all common bus systems

Mating cycles

Suitable for all common bus systems

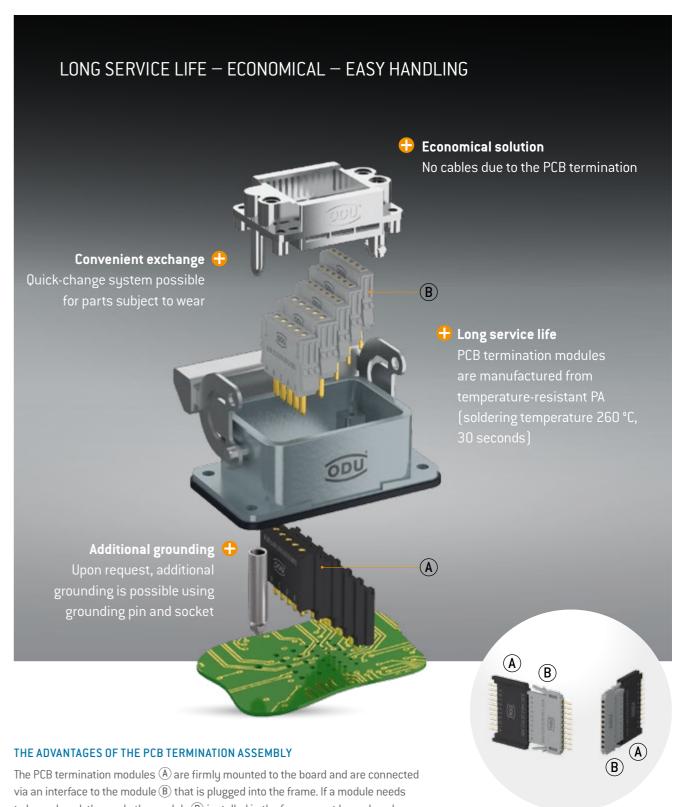
110

112

OVERVIEW OF ALL MODULES

	Modules	Description	Units/width	Features	Page
Shielded-implementation/ high-speed connector		1 contact RJ45 insert	Units 16.8 mm	Mating cycles min. 5,000 10 gigabit Ethernet in accordance with IEEE 802.3 an-2006 CAT 5, CAT 6, in accordance with ANSI/TIA IEIA-568-32-10	114

(on request)	2 contacts for SC insert	7 Units 16.8 mm	Single mode (SM) Multi mode (MM) Mating cycles minimum 10,000	446
Fiber optic (2 contacts for LC insert	7 Units 16.8 mm		116


səl		10 contacts Contact Ø: 0.7 mm	1 Unit 2.4 mm	Highest packing density Operating voltage ¹ Rated impulse voltage ¹ Max. continuous current ² Degree of pollution ¹ Mating cycles	250 V 2,500 V 7 A 2 minimum 10,000	118
PCB termination modules		6 contacts Contact Ø: 1.3 mm	Units 4.8 mm	Operating voltage ¹ Rated impulse voltage ¹ Max. continuous current ² Degree of pollution ¹ Mating cycles	400 V 2,500 V 13 A 2 minimum 10,000	120
	SECTION OF THE PARTY OF THE PAR	5 contacts Contact Ø: 2 mm	3 Units 7.2 mm	Operating voltage ¹ Rated impulse voltage ¹ Max. continuous current ² Degree of pollution ¹ Mating cycles	630 V 2,500 V 25 A 2 minimum 10,000	122

Blank modules		Blank Modules	2.4 mm 3 7.2 mm 5	Used to fill incomplete frames.	124
---------------	--	---------------	----------------------------	---------------------------------	-----

¹Acc. to IEC 60664-1:2007 (VDE 0110-1:2008) for degree of pollution 2. ²Definition max. continuous current, see page <u>145</u>.

THE PCB TERMINATION MODULES

Connector technology with ease of use for single mode via PCB contact.

via an interface to the module (B) that is plugged into the frame. If a module needs to be replaced, then only the module (B) installed in the frame must be replaced. Module (A) that is mounted on the PCB is not affected by this. An effective installation or quick-change function, as the case may be, is thereby achieved.

MODULE 20 CONTACTS

Pin protection against mechanical damage.

Removal of the assembled contact from the mating side. PART NUMBER: 087.7CC.070.002.000

For an overview of all tools please see from page 133.

Contact diameter: 0.7 mm Mating cycles: minimum 10,000 Current-carrying capacity¹: 11 A

TECHNICAL NOTES

- The current load information is valid for single contacts or fully equipped modules. For use in connector systems, the load should be reduced according to VDE 0298-4:2013 (see page 148).
- Crimp information see page 128.

TECHNICAL DATA

Voltage information²

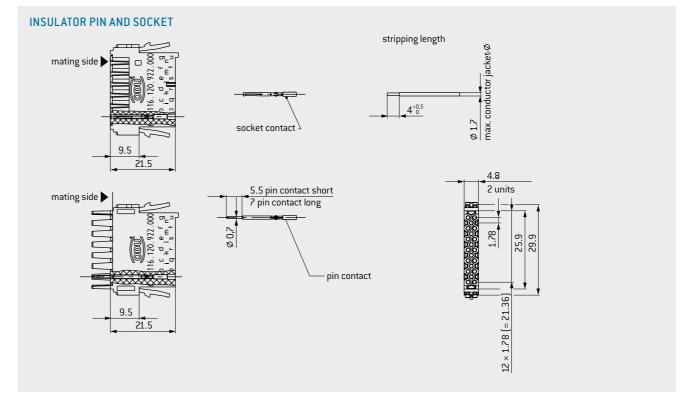
250 V 80 V Operating voltage Rated impulse voltage 2,000 V 2,000 V Degree of pollution

Voltage information acc. to MIL^3

Operating voltage 475 V Test voltage 1,425 V

Mechanical data

16 N/Modul Total mating force (average) Total sliding force (average) 12 N/Modul Contact diameter 0.7 mm Operating temperature -40 °C to +125 °C Mating cycles minimum 10,000


Materials

Insulator Thermoplastic acc. to UL-94 Contact Cu alloy

Contact finish gold-plated

MODULES

Module 20 contacts	Part number
Insulator socket	630.116.120.922.000
Insulator pin	631.116.120.922.000

Description	Part number	Conductor cross-section	Termina- tion	Nominal current ¹		Max. continuous current²	Contact resistance
		mm²	AWG/mm	Single contact A	Module fully equipped A	Single contact A	mΩ
Pin contact short	185.431.000.270.000						
Pin contact long	185.423.000.270.000	0.14-0.38	22/26	7	5.5	11	3.5
Socket contact	175.581.000.270.000						

Removal of the assembled contact from the mating side. PART NUMBER: 087.7CC.070.002.000

For an overview of all tools please see from page 133.

Contact diameter: 0.7 mm Mating cycles: minimum 10,000 Current-carrying capacity¹: 11 A

TECHNICAL NOTES

- The current load information is valid for single contacts or fully equipped modules. For use in connector systems, the load should be reduced according to VDE 0298-4:2013 (see page 148).
- Crimp information see page 128.

TECHNICAL DATA

Voltage information²

320 V 125 V Operating voltage 2,500 V 2,500 V Rated impulse voltage Degree of pollution

Voltage information acc. to MIL^3

Operating voltage 475 V Test voltage 1.425 V

Mechanical data

Total mating force (average) 8 N / Module Total sliding force (average) 6 N / Module Contact diameter 0.7 mm Operating temperature -40 °C to +125 °C Mating cycles minimum 10,000

Materials

Insulator Thermoplastic acc. to UL-94

Contact Cu alloy Contact finish gold-plated

INSULATOR PIN AND SOCKET stripping length 4.5 pin contact short 6 pin contact long 5.5 pin contact short 7 pin contact long 4+0.5 pin contact socket contact 21.5

Module 10 contacts	Part number
Insulator	631.110.110.923.000

Description	Part number	Conductor cross-section	Termina- tion	Nominal current ¹		Max. continuous current²	Contact resistance
		mm²	AWG/mm	Single contact A	Module fully equipped A	Single contact A	mΩ
Pin contact short	185.431.000.270.000						
Pin contact long	185.423.000.270.000	0.14-0.38	22/26	7	5.5	11	3.5
Socket contact	175.581.000.270.000						

Suitable PCB termination modules can be found on page 118.

Determines according to IEC 60512-5-1:2002 (din en 60512-5-1:2003) at increased temperature 45 K. 2 Definition max. continuous current, see page 145.

Removal of the assembled contact from the mating side. **PART NUMBER: 087.7CC.130.004.000**

For an overview of all tools please see from page 133.

Contact diameter: 1.3 mm
Mating cycles: minimum 10,000
Current-carrying capacity¹: 19.5 A

TECHNICAL NOTES

- The current load information is valid for single contacts or fully equipped modules. For use in connector systems, the load should be reduced according to VDE 0298-4:2013 (see page <u>148</u>).
- Crimp information see page 128.

TECHNICAL DATA

Voltage information²

Operating voltage 400 V 160 V Rated impulse voltage 2,500 V 2,500 V Degree of pollution 2 3

Voltage information acc. to MIL³

Operating voltage 775 V
Test voltage 2,325 V

Mechanical data

Total mating force (average)

Total sliding force (average)

Contact diameter

Operating temperature

Mating cycles

8.4 N / Module

7.2 N / Module

1.3 mm

-40 °C to +125 °C

minimum 10,000

Materials

Insulator Thermoplastic acc. to UL-94

Contact Cu alloy
Contact finish gold-plated

Module 6 contacts	Part number
Insulator	631.111.106.923.000

INSULATOR PIN AND SOCKET

Description	Part number	Conductor cross-section	Termina- tion	Nominal current ¹		Max. continuous current²	Contact resistance
		mm²	AWG/mm	Single contact A	Module fully equipped A	Single contact A	mΩ
Pin contact short	185.432.000.270.000						
Pin contact long	185.424.000.270.000	0.5-1	18/20	12.5	11.5	19.5	1.8
Socket contact	175.535.000.270.000						

Suitable PCB termination modules can be found on page 120.

¹Determines according to IEC 60512-5-1:2002 (din en 60512-5-1:2003) at increased temperature 45 K. ²Definition max. continuous current, see page 145.

Removal of the assembled contact from the mating side. **PART NUMBER: 087.7CC.200.003.000**

For an overview of all tools please see from page 133.

Contact diameter: 2 mm

Mating cycles: minimum 10,000 Current-carrying capacity¹: 33 A

TECHNICAL NOTES

- The current load information is valid for single contacts or fully equipped modules. For use in connector systems, the load should be reduced according to VDE 0298-4:2013 (see page 148).
- Crimp information see page 128.

TECHNICAL DATA

Voltage information²

Operating voltage 630 V 250 V
Rated impulse voltage 2,500 V 2,500 V
Degree of pollution 2 3

Voltage information acc. to MIL³

Operating voltage 1,025 V
Test voltage 3,075 V

Mechanical data

Total mating force (average)

Total sliding force (average)

Contact diameter

Operating temperature

Mating cycles

13.5 N / Module

9 N / Module

2 mm

-40 °C to +125 °C

minimum 10,000

Materials

Insulator Thermoplastic acc. to UL-94

Contact Cu alloy
Contact finish gold-plated

pin contact

socket contact

Module 5 contacts	Part number
Insulator	631.112.105.923.000

21.5

Description	Part number	Conductor cross-section	Termina- tion	Nominal current ¹ Single Module fully		Max. continuous current ²	Contact resistance
		mm²	AWG/mm	contact A	equipped A	Single contact A	mΩ
Pin contact short	185.437.000.270.000						
Pin contact long	185.436.000.270.000	1–1.5	16/18	18	15	27	1
Socket contact	175.567.000.270.000						
Pin contact short	185.441.000.270.000						
Pin contact long	185.440.000.270.000	2.5	14	24	19	33	1
Socket contact	175.570.000.270.000						

Suitable PCB termination modules can be found on page 122.

 $^1 Determines\ according\ to\ IEC\ 60512\text{-}5\text{-}1\text{:}2002\ (din\ en\ 60512\text{-}5\text{-}1\text{:}2003)\ at\ increased\ temperature\ 45\ K.\ ^2 Definition\ max.\ continuous\ current,\ see\ page\ \underline{145}\ .$

Removal of the assembled contact from the mating side. PART NUMBER: 087.7CC.350.001.000

For an overview of all tools please see from page 133.

Contact diameter: 3.5 mm
Mating cycles: minimum 10,000
Current-carrying capacity¹: 58 A

TECHNICAL NOTES

- The current load information is valid for single contacts or fully equipped modules. For use in connector systems, the load should be reduced according to VDE 0298-4:2013 (see page 148).
- Crimp information see page 128.

TECHNICAL DATA

Voltage information²

Operating voltage2,500 V1,000 VRated impulse voltage10 kV8 kVDegree of pollution23

Voltage information acc. to MIL³

Operating voltage 3,750 V
Test voltage 11,250 V

Mechanical data

Total mating force (average) 12 N / Module
Total sliding force (average) 10 N / Module
Contact diameter 3.5 mm
Operating temperature -40 °C to +125 °C
Mating cycles minimum 10,000

Materials

Insulator Thermoplastic acc. to UL-94
Contact Cu alloy

Contact Cu alloy
Contact finish gold-plated

INSULATOR SOCKET INSULATOR SOCKET INSULATOR SOCKET INSULATOR SOCKET Socket contact Socket

Module 3 contacts	Part number
Insulator socket	630.113.103.923.000
Insulator pin	631.113.103.923.000

Description	Part number	Conductor Termina- cross-section tion		Nominal current ¹		Max. continuous current²	Contact resistance
		mm²	AWG/mm	Single contact A	Module fully equipped A	Single contact A	mΩ
Pin contact short	185.463.000.270.000						
Pin contact long	185.462.000.270.000	2.5	14	25	21	37	0.4
Socket contact	177.060.000.270.000						
Pin contact short	185.461.000.270.000						
Pin contact long	185.460.000.270.000	4	12	39	30	58	0.4
Socket contact	177.059.000.270.000						
Pin contact short	185.443.000.270.000						
Pin contact long	185.442.000.270.000	6	10	39	30	58	0.4
Socket contact	177.058.000.270.000						

Determines according to IEC 60512-5-1:2002 (din en 60512-5-1:2003) at increased temperature 45 K. Definition max. continuous current, see page 145.

MODULE 2 CONTACTS

ODU LAMTAC° (contacts with lamella technology).

Removal of the assembled contact from the mating side. PART NUMBER: 087.7CC.680.001.000

For an overview of all tools please see from page 133.

Contact diameter: 5 mm Mating cycles: minimum 10,000 Current-carrying capacity¹: 108 A

TECHNICAL NOTES

- The current load information is valid for single contacts or fully equipped modules. For use in connector systems, the load should be reduced according to VDE 0298-4:2013 (see page 148).
- Crimp information see page 128.

TECHNICAL DATA

Voltage information²

Operating voltage 400 V 160 V 4 kV 3 kV Rated impulse voltage Degree of pollution

Voltage information acc. to ${\rm MIL^3}$

Operating voltage 975 V Test voltage 2,925 V

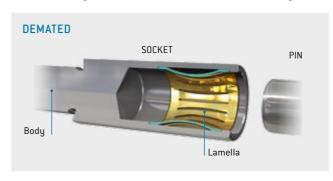
Mechanical data

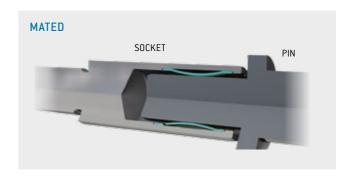
Total mating force (average) 34 N / Module Total sliding force (average) 28 N / Module Contact diameter 5 mm -40 °C to +125 °C Operating temperature Mating cycles minimum 10,000

Materials

Contact finish

Thermoplastic acc. to UL-94 Insulator Contact body Cu alloy CuBe alloy Contact lamella


silver-plated


INSULATOR PIN AND SOCKET stripping length pin contact

socket contact

ODU LAMTAC° (CONTACTS WITH LAMELLA TECHNOLOGY)

In application with a housing please check the cable space requirement.

Module 2 contacts	Part number
Insulator	631.120.102.923.000

Description	Part number	Conductor Nominal current ¹ Max. continuous cross-section current ²				Contact resistance
		mm²	Single contact A	Module fully equipped A	Single contact A	mΩ
Pin contact	185.484.000.201.000	10	FC	FC	00	0.2
Socket contact	178.879.100.201.000	10	56	56	90	0.2
Pin contact	185.485.000.201.000	10	CO	CO	100	0.2
Socket contact	178.880.100.201.000	16	68	68	108	0.2

 1 Definition max. continuous current, see page $\underline{145}$. 2 IEC 60664-1:2007 (VDE 0110-1:2008) see page $\underline{139}$. 3 See page $\underline{143}$.

Determines according to IEC 60512-5-1:2002 (din en 60512-5-1:2003) at increased temperature 45 K. 2 Definition max. continuous current, see page 145.

ODU LAMTAC® (contacts with lamella technology).

HIGH CURRENT

REQUIRED ASSEMBLY TOOL

For screwing and releasing the contacts.

Locking torque: 2.7 Nm ± 0.1 Nm PART NUMBER: 087.611.002.001.000

For an overview of all tools please see from page 133.

Contact diameter: 8 mm
Mating cycles: minimum 10,000
Current-carrying capacity¹: 150 A

TECHNICAL NOTES

- The current load information is valid for single contacts or fully equipped modules. For use in connector systems, the load should be reduced according to VDE 0298-4:2013 (see page 148).
- Crimp information see page 128.

TECHNICAL DATA

Voltage information²

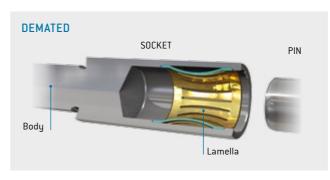
Operating voltage400 V160 VRated impulse voltage3 kV3 kVDegree of pollution23

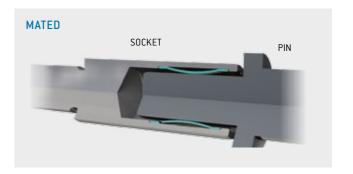
Voltage information acc. to MIL³

Operating voltage 700 V
Test voltage 2,100 V

Mechanical data

Total mating force (average) 60 N / Module
Total sliding force (average) 45 N / Module
Contact diameter 8 mm
Operating temperature -40 °C to +125 °C
Mating cycles minimum 10,000


Materials


Insulator Thermoplastic acc. to UL-94

Contact body Cu alloy
Contact lamella CuBe alloy
Contact finish silver-plated

INSULATOR PIN insulator pin mounting tool spanner flats stripping length stripping length insulator socket spanner flats insulator socket spanner flats spanner flats spanner flats insulator socket spanner flats spanner flats spanner flats insulator socket spanner flats spanner flats

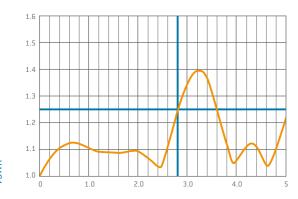
ODU LAMTAC° (CONTACTS WITH LAMELLA TECHNOLOGY)

Module 2 contacts	Part number
Insulator socket	630.114.102.923.000
Insulator pin	631.114.102.923.000

Description	Part number	Conductor cross-section	Nominal current ¹		Max. continuous current²	Contact resistance
		mm²	Single contact A	Module fully equipped A	Single contact A	mΩ
Pin contact	181.875.100.200.000	16	76	75	123	0.3
Socket contact	178.875.100.201.000	10	76	(2	123	0.2
Pin contact	181.874.100.200.000	25	102	100	4.50	0.2
Socket contact	178.874.100.201.000	25	103	100	150	0.2

¹Determines according to IEC 60512-5-1:2002 (din en 60512-5-1:2003) at increased temperature 45 K. ²Definition max. continuous current, see page 145.

MODULE 4 CONTACTS FOR 50 Ω



HIGH FREQUENCY CHARACTERISTICS FOR 50 Ω coax contacts¹

Insertion loss

Voltage standing-wave ratio VSWR

Frequency in GHz

Mating cycles: minimum 10,000 Frequency range¹: 0–2.8 GHz

TECHNICAL NOTES

• Crimp information see page 128.

TECHNICAL DATA

Voltage information

 $\begin{array}{ll} \mbox{Frequency range}^1 & \mbox{O}-2.8 \mbox{ GHz} \\ \mbox{Insulation resistance} & >100 \mbox{ G}\Omega \end{array}$

Voltage information acc. to MIL²

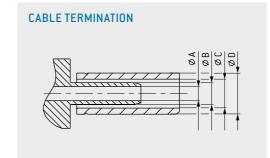
Operating voltage 525 V
Test voltage 1,575 V

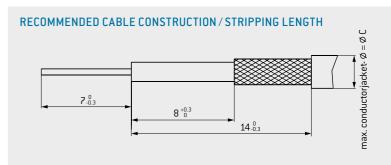
Mechanical data

Total mating force (average) 10.6 N / Modul
Total sliding force (average) 7.6 N / Modul
Operating temperature -40 °C to +125 °C
Mating cycles minimum 10,000

Materials

Insulator Thermoplastic acc. to UL-94
Contact/Insulator Cu alloy/PTFE
Contact finish gold-plated




Removal of the assembled contact from the mating side.

PART NUMBER: 087.7CC.310.001.000

For an overview of all tools please see from page 133.

mating side pin contact socket contact socket contact

Module 4 contacts	Part number
Insulator	631.121.104.923.000

Description	Part number	Charac- teristic impedance Ω	Fre- quency range ^{GHz}	Cable ¹	A	В	С	D	Part number Crimp inserts
Pin contact	122.133.001.270.000		0.5	RG 178, RG 196	1.1	1.7	2.25	3.2	082.000.039.101.000
Pin contact	122.133.003.270.000	50	2.8	RG 174, RG 188, RG 316	1.75	2.7	3.2	3.8	082.000.039.102.000
Socket contact	122.133.002.270.000		0.5	RG 178, RG 196	1.1	1.7	2.25	3.2	082.000.039.101.000
Socket contact	122.133.004.270.000	50	2.8	RG 174, RG 188, RG 316	1.75	2.7	3.2	3.8	082.000.039.102.000

¹ Loss levels depend on used conductor type at a VSWR of 1.25. Further are available on request. Tested with conductor length of each 2 × 5 cm. ² See from page <u>143</u>.

¹ Special lines and alternative models on request.

MODULE 2 CONTACTS FOR 50 Ω

HIGH FREQUENCY CHARACTERISTICS FOR 50 Ω COAX CONTACTS¹

Mating cycles: minimum 10,000 Frequency range¹: 0-4 GHz

TECHNICAL NOTES

• Crimp information see page 128.

TECHNICAL DATA

Voltage information

0-4 GHz Frequency range¹ > 100 G Ω Insulation resistance

Voltage information acc. to MIL²

Operating voltage 800 V Test voltage 2,400 V

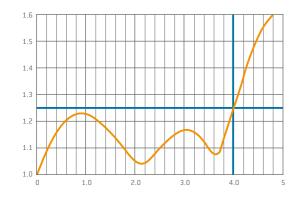
Mechanical data

Total mating force (average) 8.1 N / Modul 5.8 N / Modul Total sliding force (average) Operating temperature -40 °C to +125 °C minimum 10,000 Mating cycles

Insulator Thermoplastic acc. to UL-94 Cu alloy/PTFE Contact/Insulator Contact finish gold-plated

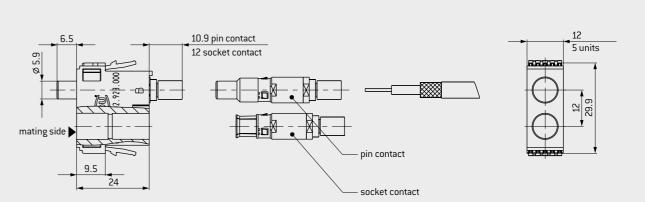
Materials

REMOVAL TOOL

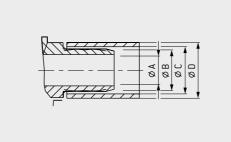

Removal of the assembled contact from the mating side. PART NUMBER: 087.7CC.690.001.000

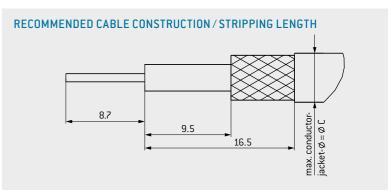
For an overview of all tools please see from page 133.

Voltage standing-wave ratio VSWR


Frequency in GHz

Insertion loss




Frequency in GHz

INSULATOR FOR PIN AND SOCKET

CABLE TERMINATION

Module 2 contacts	Part number
Insulator	631.120.102.923.000

Description	Part number	Charac- teristic impedance Ω	Fre- quency range GHz	Cable ¹	A	В	С	D	Part number Crimp inserts
Pin contact	122.132.001.270.000		0.2	RG 178, RG 196	1.1	1.7	2.25	3.2	082.000.039.101.000
Pin contact	122.132.003.270.000	50	0.4	RG 174, RG 188, RG 316	1.75	2.7	3.2	3.8	082.000.039.102.000
Pin contact	122.132.007.270.000		3.5	RG 58	3.15	4.5	5.2	6.15	082.000.039.106.000
Pin contact	122.132.013.270.000		4	RG 223	3.15	4.5	5.9	6.75	082.000.039.108.000
Socket contact	122.132.002.270.000		0.2	RG 178, RG 196	1.1	1.7	2.25	3.2	082.000.039.101.000
Socket contact	122.132.004.270.000	50	0.4	RG 174, RG 188, RG 316	1.75	2.7	3.2	3.8	082.000.039.102.000
Socket contact	122.132.008.270.000		3.5	RG 58	3.15	4.5	5.2	6.15	082.000.039.106.000
Socket contact	122.132.014.270.000		4	RG 223	3.15	4.5	5.9	6.75	082.000.039.108.000

¹ Loss levels depend on used conductor type at a VSWR of 1.25. Further are available on request. Tested with conductor length of each 2 × 5 cm.² See from page 143.

¹ Special lines and alternative models on request.

MODULE 2 CONTACTS FOR 75 Ω

HIGH FREQUENCY CHARACTERISTICS FOR 75 Ω COAX CONTACTS¹

Mating cycles: minimum 10,000 Frequency range¹: 0–2.7 GHz

TECHNICAL NOTES

• Crimp information see page 128.

TECHNICAL DATA

Voltage information

Frequency range 1 0-2.7 GHz Insulation resistance $> 100 \text{ G}\Omega$

Voltage information acc. to MIL²

Operating voltage 930 V
Test voltage 2,790 V

Mechanical data

Total mating force (average)

Total sliding force (average)

Operating temperature

Mating cycles

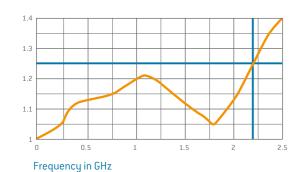
8.1 N / Modul

5.8 N / Modul

-40 °C to +125 °C

minimum 10,000

Materials

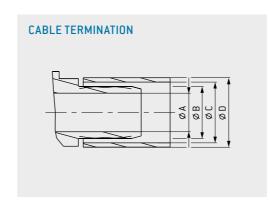

Insulator Thermoplastic acc. to UL-94

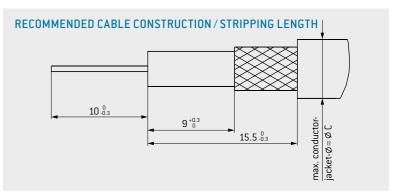
Contact/Insulator Cu alloy/PTFE Contact finish gold-plated

Frequency in GHz

Voltage standing-wave ratio VSWR

Insertion loss





Removal of the assembled contact from the mating side. PART NUMBER: 087.7CC.690.001.000

For an overview of all tools please see from page 133.

INSULATOR FOR PIN AND SOCKET 12.1 pin contact 12.6 socket contact pin contact socket contact

Module 2 contacts	Part number
Insulator	631.120.102.923.000

Description	Part number	Charac- teristic impedance Ω	Fre- quency range ^{GHz}	Cable ¹	A	В	С	D	Part number Crimp inserts
Pin contact	122.131.003.270.000	75	1.2	RG 179, RG 187	1.75	2.7	3.2	3.8	082.000.039.102.000
Pin contact	122.131.009.270.000	1.2	2.7	RG 59	4	5.4	6.3	7.2	082.000.039.109.000
Socket contact	122.131.004.270.000	75	1.2	RG 179, RG 187	1.75	2.7	3.2	3.8	082.000.039.102.000
Socket contact	122.131.010.270.000	1.2	2.7	RG 59	4	5.4	6.3	7.2	082.000.039.109.000

¹ Loss levels depend on used conductor type at a VSWR of 1.25. Further are available on request. Tested with conductor length of each 2 × 5 cm.² See from page <u>143</u>.

¹ Special lines and alternative models on request.

TERMINATION ACCESSORIES SEE PAGE 108

5 units

MODULE 2 CONTACTS FOR COMPRESSED AIR

Inner diameter of tube max. 4 mm, Push-in diameter max. 6 mm

Removal of the assembled contact from the mating side. PART NUMBER: 087.7CC.680.001.000

For an overview of all tools please see from page 133.

Operating pressure¹: 12 bar Mating cycles²: minimum 10,000 Inner diameter tube: M5

TECHNICAL NOTES

- The contacts are pre-stressed in the mated state. The frame must maintain this pre-stress with a holding device.
- Vacuum modules and further termination types on request.
- No 0₂ module².

TECHNICAL DATA

Mechanical data

Valid max. operating pressure Operating force Operating temperature Mating cycles Inner diameter tube

Materials

Insulator Valve body Sealing

12 bar

10.4 N (2 × 5.2 N) -40 °C to +125 °C minimum 10,000 M5 internal thread for commercially available Push-in

Thermoplastic acc. to UL-94

Cu alloy, blank NBR; sealing material

connections

-plug sleeve -coupling plug

Module 2 contacts	Part number
Insulator	631.120.102.923.000

INSULATOR PIN AND SOCKET

Description	Part number	Termination
Plug sleeve (non shut-off)	196.035.001.300.000	
Coupling plug (non shut-off)	196.035.003.300.000	M5
Coupling plug (shut-off)	196.035.002.300.000	

FLOW RATE DIAGRAM

The FLOW RATE DIAGRAM refers to the locking version with a maximum gap between socket and pin piece of ≤ 0.5 mm. If the clearance is modified, the drop of pressure increases.

¹Burst pressure min. 40 bar. ²The stated mating cycles are possible via regular maintenance intervals. ³Not suitable for mixture with over 25% portion of oxygen and explosive gases.

ACCESSORIES FOR TERMINATION

COMPRESSED AIR

TERMINATION TYPE I

Nipple fitting

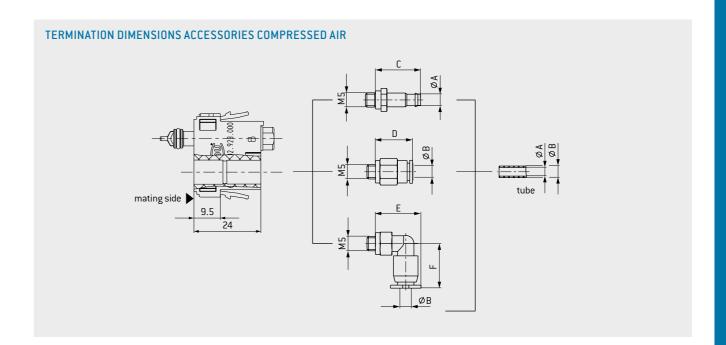
TERMINATION TYPE II PUSH-IN

Push-in fitting

L connection

TECHNICAL DATA

• Tightening torque 1.5 Nm


TECHNICAL DATA

Mechanical data

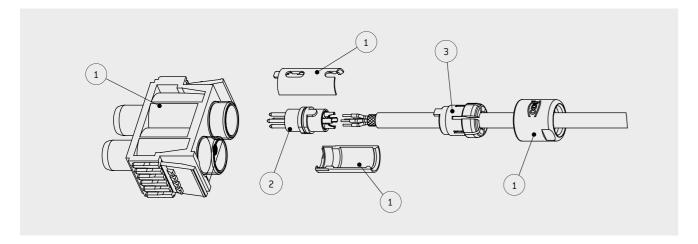
Valid operating pressure (static)
Operating temperature
Thread termination

0.95 to 14 bar -10 °C to +80 °C

Description	Part number	Dim. A Inner diameter	Dim. B Outer diameter	Dim. C	Dim. D	Dim. E	Dim. F
		of tube	of tube	mm	mm	mm	
		mm	mm	inc	l. sealing was	her	mm
Nipple fitting	945.000.001.000.123	2		10.2			
Nipple fitting	945.000.001.000.136	3		14.2			
Nipple fitting	945.000.001.000.137	4		15.8			
Push-in fitting	945.000.001.000.138		3		13		
Push-in fitting	945.000.001.000.139		4		13.2		
Push-in fitting	945.000.001.000.140		6		14.2		
L connection Push-in	945.000.001.000.141		3			14	11
L connection Push-in	945.000.001.000.142		4			14.9	15.6
L connection Push-in	945.000.001.000.143		6			17.2	16.2

MODULE FOR MULTI-POSITION, SHIELDED IMPLEMENTATION/HIGH-SPEED CONNECTOR

Size 1 (e.g. for use in bus systems). 2 inserts.

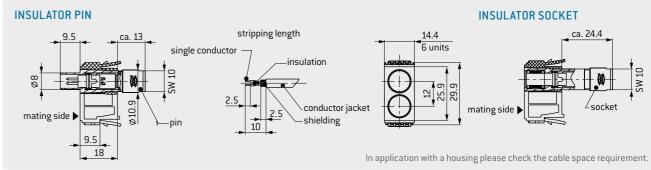


Mating cycles: minimum 10,000 CAT 5, USB 2.0 2 to 14 contacts

TECHNICAL NOTES

- The inserts listed here for shielded implementations/high-speed connectors are optimally suitable for all common bus systems with transfer rates up to 10 MHz. For example, Profibus, RS485, Flexray, CAN-Bus and RS232.
- Selected inserts are suitable and qualified for data rates up to 1 Gbit/s. For example, Gigabit-Ethernet, Fast-Ethernet, IEEE 1394, USB 2.0, FireWire S400 (on request).

HOW TO CONFIGURE YOUR HIGH-SPEED CONNECTOR


r Base parts Part number

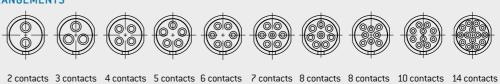
0
0
t

ASSEMBLY SET

Cable Ø	Part number
mm	
1.5 to 2.1	751.020.188.304.022
2 to 3.2	751.020.188.304.032
3 to 4.2	751.020.188.304.042
4 to 5.2	751.020.188.304.052
5 to 6.2	751.020.188.304.062
6 to 7.2	751.020.188.304.072
7 to 7.7	751.020.188.304.077

110

CONTACT ARRANGEMENTS


0.7

0.5

0.5

10

14

CAT 5

NSERT WITH ODU TURNTAC* (MATING CYCLES MINIMUM 10,000) 2	Number of contacts	Contact diameter	Termination cross-section	Rated voltage¹	Rated impulse voltage ¹	Degree of pollution ¹	Nominal voltage ²	Model	Category ³	Insert complete⁴ part number	Total mat- ing force	Total sliding force		
2 1.3 20 32 2 550 Socket 701.744.724.002.200 8.5 7.5 3 1.3 20 16 2 3 500 Pin 701.844.724.003.200 8.5 7.5 4 0.9 22 10 2 3 500 Socket CAT 5 701.744.724.003.200 10.5 9 4 0.9 22 10 2 3 500 Pin 701.849.724.004.200 10.5 9 5 0.9 22 32 1.5 2 450 Pin 701.849.724.004.000 701.749.724.004.000 701.749.724.004.000 701.749.724.004.000 10.5 9 6 0.7 22 32 1.5 2 400 Pin 701.848.724.406.200 701.749.724.005.200 701.749.724.406.200 701.74		mm	AWG	٧	kV		V AC				N	N		
2 1.3 20 80 2 2 550 Socket 701.744.724.002.200 8.5 7.5 3 1.3 20 16 2 3 500 Pin 701.844.724.003.200 8.5 7.5 4 0.9 22 10 2 3 500 Pin Socket CAT 5 701.744.724.004.200 701.749.724.004.200 10.5 9 4 0.9 22 10 2 30 500 Pin Socket USB 2.0 701.749.724.004.200 10.5 9 5 0.9 22 32 1.5 2 450 Pin Socket 701.749.724.005.200 701.749.724.005.200 701.749.724.005.200 701.749.724.005.200 701.749.724.005.200 10.5 9 6 0.7 22 32 1.5 2 400 Pin 701.848.724.406.200 13 10 7 0.7 22 32 1.5 2 400 Pin 701.848.724.406.200 13 10	NSERT W	/ITH ODU T	URNTAC° (M	IATING CY	CLES MININ	ИUM 10,0	00)							
80	2	1 2	20	32	2	3	EEO	Pin		701.844.724.002.200	ОГ	75		
3 1.3 20 40 2 2 500 Socket 701.744.724.003.200 8.5 7.5 4 0.9 22 10 2 3 500 Pin Socket CAT 5 701.849.724.004.200 10.5 9 4 0.9 22 10 2 3 500 Pin Socket VSB 2.0 701.849.724.004.000 10.5 9 5 0.9 22 32 1.5 2 450 Pin Socket 701.749.724.005.200 10.5 9 6 0.7 22 32 1.5 2 400 Pin Socket 701.848.724.406.200 13 10 7 0.7 22 32 1.5 2 400 Pin Socket 701.848.724.407.200 13 10 Pin	۷	1.5	20	80	۷	2	550	Socket		701.744.724.002.200	0.5	۲.5		
40 2 Socket 701.744.724.003.200 4 0.9 22 10 2 3 500 Pin CAT 5 701.849.724.004.200 10.5 9 4 0.9 22 10 2 3 500 Pin USB 2.0 701.749.724.004.200 10.5 9 5 0.9 22 32 1.5 2 450 Pin Socket 701.749.724.005.200 701.7	2	4.0	20	16	2	3	F00	Pin		701.844.724.003.200	0.5	7.5		
4 0.9 22 32 2 500 Socket CAT 5 701.749.724.004.200 10.5 9 4 0.9 22 10 2 3 500 Pin VSB 2.0 701.849.724.004.000 10.5 9 5 0.9 22 32 1.5 2 450 Pin 701.849.724.005.200 10.5 9 6 0.7 22 32 1.5 2 400 Pin 701.848.724.406.200 13 10 7 0.7 22 32 1.5 2 400 Pin 701.848.724.407.200 13 10 7 0.7 22 32 1.5 2 400 Pin 701.848.724.407.200 13 10 8 0.7 10.5 <td>3</td> <td>1.3</td> <td>20</td> <td>40</td> <td>۷</td> <td>2</td> <td>500</td> <td>Socket</td> <td></td> <td>701.744.724.003.200</td> <td>8.5</td> <td>7.5</td>	3	1.3	20	40	۷	2	500	Socket		701.744.724.003.200	8.5	7.5		
32 2 Socket 701.749.724.004.200 4 0.9 22 10 2 500 Socket USB 2.0 5 0.9 22 32 1.5 2 450 Pin 701.849.724.004.000 6 0.7 22 32 1.5 2 400 Pin 701.848.724.406.200 7 0.7 22 32 1.5 2 400 Pin 701.848.724.406.200 7 0.7 22 32 1.5 2 400 Pin 701.848.724.407.200 7 0.7 22 32 1.5 2 400 Pin 701.848.724.407.200 7 0.7 22 32 1.5 2 400 Pin 701.848.724.407.200 7 0.7 22 32 1.5 2 400 Pin 701.848.724.407.200 7 0.7 22 32 1.5 2 701.748.724.407.200 7 0.7 22 32 1.5 2 701.848.724.407.200 7 0.7 22 32 1.5 2 701.848.724.407.200 7 0.7 22 32 1.5 2 701.848.724.407.200 7 0.7 22 32 1.5 2 701.848.724.407.200 7 0.7 22 32 1.5 2 701.848.724.407.200 7 0.7 22 32 1.5 2 701.848.724.407.200 7 0.7 22 32 1.5 2 701.848.724.407.200 7 0.7 22 32 1.5 2 701.848.724.407.200		0.0	22	10	2	3	500	Pin	CATE	701.849.724.004.200	40.5	0		
4 0.9 22 32 2 500 Socket USB 2.0 701.749.724.004.000 10.5 9 5 0.9 22 32 1.5 2 450 Pin 701.849.724.005.200 701.749.724.005.200 10.5 9 6 0.7 22 32 1.5 2 400 Pin 701.848.724.406.200 701.748.724.406.200 701.748.724.406.200 701.748.724.406.200 701.748.724.407.200 701.748.724.407.200 701.748.724.407.200 701.748.724.407.200 701.748.724.407.200 701.748.724.407.200 701.748.724.407.200 701.848.724.407.200 701.848.724.407.200 701.848.724.407.200 701.848.724.407.200	4	0.9	22	32	2	2	500	Socket	LAI 5	701.749.724.004.200	10.5	9		
32 2 Socket 701.749.724.004.000 5 0.9 22 32 1.5 2 450 Pin 701.849.724.005.200 6 0.7 22 32 1.5 2 400 Pin 701.848.724.406.200 7 0.7 22 32 1.5 2 400 Pin 701.848.724.406.200 7 0.7 22 32 1.5 2 400 Pin 701.848.724.407.200 8 Pin 701.848.724.407.200 9 Pin 701.848.724.407.200 13 10 Pin 701.848.724.407.200 Pin 701.848.724.407.200 Pin 701.848.724.407.200 Pin 701.848.724.407.200 Pin 701.848.724.407.200		0.0	22	10	2	3	500	Pin	1100 0 0	701.849.724.004.D00	40.5	0		
5 0.9 22 32 1.5 2 450 Socket 701.749.724.005.200 10.5 9 6 0.7 22 32 1.5 2 400 Pin 701.848.724.406.200 701.748.724.406.200 701.748.724.406.200 701.748.724.407.200 701.748.724.407.200 701.748.724.407.200 Pin 701.848.724.407.200 701.748.724.407.200 Pin 701.848.724.407.200 701.848.724.407.200 Pin 701.848.724.408.200	4	0.9	22	32	2	2	500	Socket	02R 5.0	701.749.724.004.D00	10.5	9		
Socket 701.749.724.005.200 6 0.7 22 32 1.5 2 400 Pin 701.848.724.406.200 701.748.724.406.200 7 0.7 22 32 1.5 2 400 Pin 701.848.724.407.200 701.748.724.407.200 701.748.724.407.200 701.748.724.407.200 701.748.724.407.200 701.748.724.407.200 701.748.724.407.200 701.748.724.407.200 701.848.724.407.200 701.848.724.407.200	_	0.0	22	22	4.5	2	450	Pin		701.849.724.005.200	40.5	0		
6 0.7 22 32 1.5 2 400 Socket 701.748.724.406.200 13 10 7 0.7 22 32 1.5 2 400 Fin 701.848.724.407.200 701.748.724.407.200 Pin 701.848.724.407.200 Pin 701.848.724.408.200	5	0.9	22	32	1.5	2	450	Socket		701.749.724.005.200	10.5	9		
Socket 701.748.724.406.200 7 0.7 22 32 1.5 2 400		0.7	22	22	4.5	2	400	Pin		701.848.724.406.200	42	40		
7 0.7 22 32 1.5 2 400 Socket 701.748.724.407.200 13 10 Pin 701.848.724.408.200	Ь	U.7	22	32	1.5	2								10
Socket 701.748.724.407.200 Pin 701.848.724.408.200	_	0.7	22	22	4.5		400	Pin		701.848.724.407.200	40	40		
	1	U.7	22	32	1.5	2	400	Socket		701.748.724.407.200	13	10		
								Pin		701.848.724.408.200				

333

333

333

300

Socket

Socket

Pin

Socket

Pin

Socket

If required, selected inserts with 60,000 mating cycles (ODU SPRINGTAC) available upon request.

32

32

25

25

1.5

1.5

1.5

22

26

28

28

USB 2.0

2

Contents Cassination according to Solid 1997.

13

701.748.724.408.200

701.841.724.408.D00

701.741.724.408.D00

701.841.724.010.400

701.741.724.010.200

701.841.724.014.400

701.741.724.014.200

10

10

12

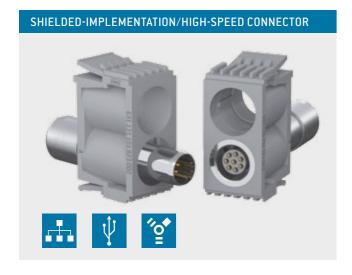
12

111

¹Available with crimp contact upon request.

 $^{^{1}\}text{According to IEC 60664-1:2007 (VDE 0110-1:2008), see page} \ \underline{139}.^{2}\text{According to EIA-364-20D:2008, SAE AS 13441:2004 method 3001.1.}$

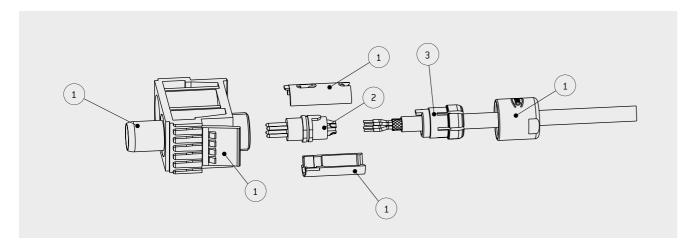
³ Classification according to ISO/IEC 11801:2002. ⁴ Use of crimp versi


113

MODULES

MODULE FOR MULTI-POSITION SHIELDED-IMPLEMENTATION/HIGH-SPEED CONNECTOR

Size 1 (e.g. for use in bus systems). 1 insert.

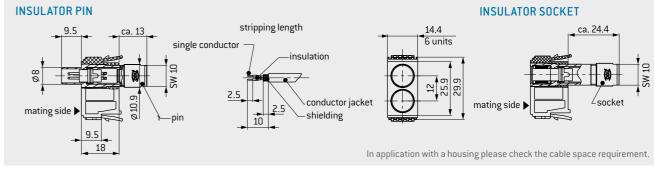


Mating cycles: minimum 10,000 CAT 5, USB 2.0 2 to 14 contacts

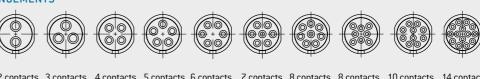
TECHNICAL NOTES

- The inserts listed here for shielded implementations/high-speed connectors are optimally suitable for all common bus systems with transfer rates up to 10 MHz. For example, Profibus, RS485, Flexray, CAN-Bus and RS232.
- Selected inserts are suitable and qualified for data rates up to 1 Gbit/s. For example, Gigabit-Ethernet, Fast-Ethernet, IEEE 1394, USB 2.0, FireWire S400 (on request).

HOW TO CONFIGURE YOUR HIGH-SPEED CONNECTOR



ASSEMBLY SET


Order	Base parts	Part number		Cable Ø	Part number	
4	Insulator socket	630.131.101.923.000		mm		
1	incl. socket housing			1.5 to 2.1	751.020.188.304.022	
4		624 424 404 622 600		2 to 3.2	751.020.188.304.032	
1	Insulator pin incl. pin housing	631.131.101.923.000		3 to 4.2	751.020.188.304.042	
2	Insert cpl. solder contacts ¹	See next page		4 to 5.2	751.020.188.304.052	
3	Assembly set	See table on the right		5 to 6.2	751.020.188.304.062	
				6 to 7.2	751.020.188.304.072	
				7 to 7.7	751.020.188.304.077	

 $^{^{\}rm 1}\mbox{\sc Available}$ with crimp contact upon request.

112

CONTACT ARRANGEMENTS

2 contacts	3 contacts	4 contacts	5 contacts	6 contacts	7 contacts	8 contacts	8 contacts	10 contacts	14 contacts
		CAT 5					CAT 5		
		USB 2.0							

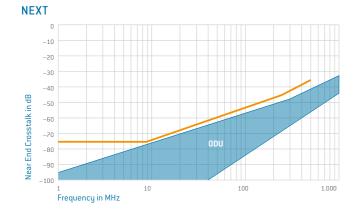
Number of contacts	Contact diameter	Termination cross-section	Rated voltage ¹	Rated impulse voltage ¹	Degree of pollution ¹	Nominal voltage ²	Model	Category ³	Insert complete⁴ part number	Total mat- ing force	Total sliding force
	mm	AWG	V	kV		V AC				N	N
NSERT WITH ODU TURNTAC® (MATING CYCLES MINIMUM 10,000)											
2	1.3	20	32	2	3	550	Pin		701.844.724.002.200	8.5	7.5
-	1.5	20	80	-	2	330	Socket		701.744.724.002.200	0.5	1.5
3	1.3	20	16	2	3	500	Pin		701.844.724.003.200	8.5	7.5
3	1.5	20	40	۷	2	500	Socket		701.744.724.003.200	0.5	7.5
4	0.9	22	10	2	3	500	Pin	CAT 5	701.849.724.004.200	10.5	9
4	0.9	22	32	۷	2	500	Socket	LAIS	701.749.724.004.200	10.5	9
4	0.0	22	10	2	3	500	Pin	USB 2.0	701.849.724.004.D00	10.5	0
4	0.9	22	32	2	2	500	Socket	028 5.0	701.749.724.004.D00	10.5	9
-	0.0	22	22	4.5	2	450	Pin		701.849.724.005.200	40.5	0
5	0.9	22	32	1.5	2	450	Socket		701.749.724.005.200	10.5	9
	0.7	22	32	1.5	2	400	Pin		701.848.724.406.200	13	10
6	0.7	22	32	1.5	2	400	Socket		701.748.724.406.200	13	10
7	0.7	22	32	1.5	2	400	Pin		701.848.724.407.200	13	10
	U.Y	22	32	1.5	2	400	Socket		701.748.724.407.200	13	10
0	0.7	22	22	4.5	2	222	Pin		701.848.724.408.200	42	40
8	0.7	22	32	1.5	2	333	Socket		701.748.724.408.200	13	10
0	0.5	20	22	4.5	2	222	Pin	CATE	701.841.724.408.D00	42	40
8	0.5	26	32	1.5	2	333	Socket	CAT 5	701.741.724.408.D00	13	10
40	0.5	20	25	4.5	2	222	Pin		701.841.724.010.400	4.5	42
10	0.5	28	25	1.5	2	333	Socket		701.741.724.010.200	15	12
4.4	0.5	20	25	4.5	2	200	Pin		701.841.724.014.400	4.5	42
14	0.5	28	25	1.5	2	300	Socket		701.741.724.014.200	15	12

If required, selected inserts with 60,000 mating cycles (ODU SPRINGTAC) available upon request.

 $^{^{1}\}text{According to IEC 60664-1:2007 (VDE 0110-1:2008), see page } \underline{139}.^{2}\text{According to EIA-364-20D:2008, SAE AS } 13441:2004 \text{ method } 3001.1.$

³ Classification according to ISO/IEC 11801:2002. ⁴ Use of crimp versi

DULES


MODULE FOR INDUSTRIAL ETHERNET RJ45 / 10 GBIT/S

STEADYTEC® Technology

Mating cycles: min. 5,000 TIAA/TIAB/Profinet/CAT 5/CAT 6_A 8 contacts

TECHNICAL NOTES

- Data transmission
- This module is suitable for the transmission data according to CAT 6, TIA/EIA-568-B.2-10, Class EA according to ISO/IEC 11801-Am 1.2 (draft) and IN EN 50173-1 and are certified by GHMT and 3P.
 Suitable for the transmission of 10 Gbit/s according to IEEE 802.3.
- 8-way RJ45 field plug and RJ45 plug insert CAT 6, (assembly w/o special tools) for stranded and solid wire cables
- Improved vibration and shock resistance by e.g. the use of four springs at the shroud in the RJ45 jack Cat.6A and RJ45 coupler CAT 6,
- Multi-port capable

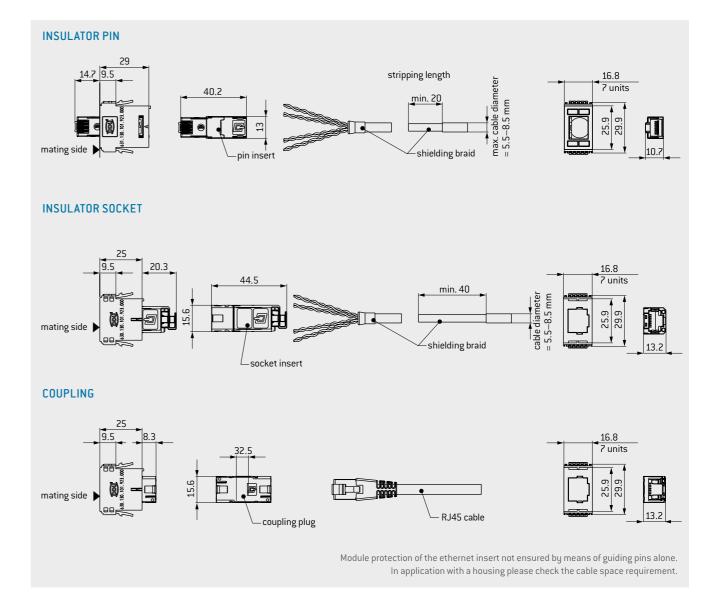
TECHNICAL DATA

 $\begin{array}{ll} \mbox{Contact resistance} & < 20 \ m\Omega \\ \mbox{Insulation resistance} & > 500 \ M\Omega \\ \mbox{Mating cycles} & \mbox{min. 5,000} \end{array}$

Dielectric strength

 $\begin{array}{ll} {\sf Contact-contact} & > 1,000 \, {\sf V}, {\sf DC} \\ {\sf Contact-shiedling} & > 1,500 \, {\sf V}, {\sf DC} \\ {\sf Current-carrying capacity} & 1 \, {\sf A} \\ \end{array}$

Transfer impedance


 $\begin{array}{lll} \text{at 1 MHz} & < 100 \text{ m}\Omega \\ \text{at 10 MHz} & < 200 \text{ m}\Omega \\ \text{at 80 MHz} & < 1,600 \text{ m}\Omega \end{array}$

Materials

Surface Sn

Temperature range −40 °C to +70 °C

Modules for multi-position	Part number
Insulator socket	630.130.101.923.000
Insulator pin	631.130.101.923.000

Description	Part number	Category	Termination
			AWG/mm
Coupling for RJ45	923.000.005.000.145		RJ45, 8 contacts
Socketinsert	923.000.005.000.146	TIA A	22-26
Socket insert	923.000.005.000.147	TIA B	22-26
Socketinsert	923.000.005.000.148	Profinet	22-26
Pin insert	923.000.005.000.149	TIAA/TIAB/Profinet	22-26

114

MODULE 2 CONTACTS FOR FIBER OPTIC **CONTACTS GOF**

On request.

INSERT LC

Ferrule Single mode/Multi mode Mating cycles¹: minimum 10,000

TECHNICAL NOTES

Depending on the function, the contacts are pre-stressed in the mated state. The frame must maintain this pre-stress with a holding device.

TECHNICAL DATA

Mating cycles¹ minimum 10,000

INSERTS SC

Ferrule Zirconia

SM: 125,5 μ m + 1 μ m MM: 127 μ m + 4 μ m

Insertion loss

SM: max. 0.5 dB MM: max. 0.4 dB SM: min. 40 dB Return loss MM: min. 30 dB

 $-40\,^{\circ}\text{C}$ to $+70\,^{\circ}\text{C}$ Temperature range Cable outer diameter 5 mm to 8 mm

INSERTS LC

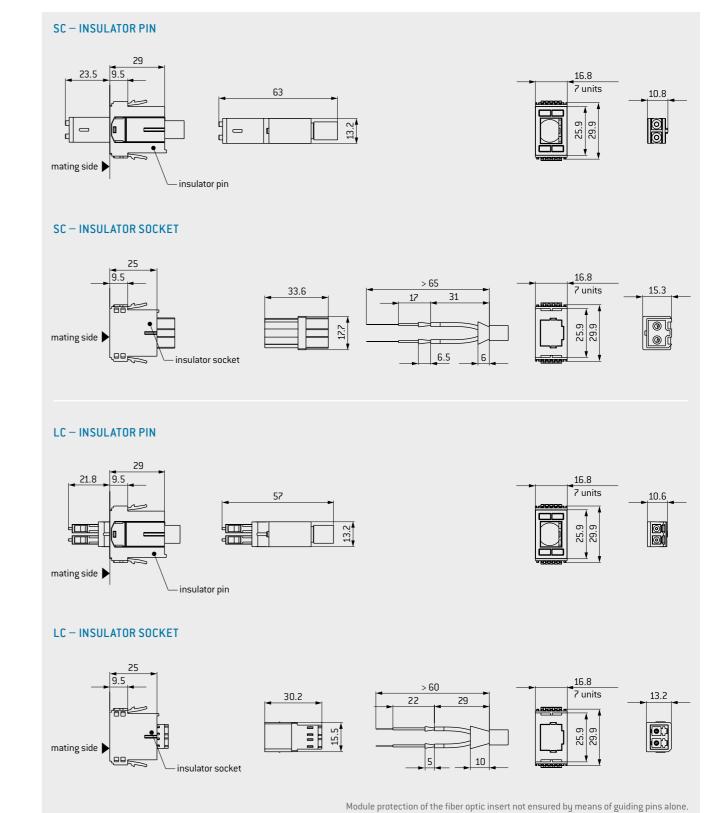
Return loss

Ferrule Zirconia

SM: 125.5 μ m + 1 μ m

MM: 127 μm +4 μm

Optical features Insertion loss


SM: max. 0.5 dB MM: max. 0.4 dB

SM: min. 40 dB

MM: min. 30 dB

-40 °C to +70 °C Temperature range Cable outer diameter 5 mm to 8 mm

Optical features

In application with a housing please check the cable space requirement.

¹The stated mating cycles are possible via regular maintenance intervals.

MODULE 10 CONTACTS

For the effective PCB contact with quick-change function.

COMPATIBLE WITH MODULE 10 CONTACTS ON P. 88

Contact diameter: 0.7 mm Mating cycles: minimum 10,000 Current-carrying capacity¹: 7 A

TECHNICAL NOTES

- The current load information is valid for single contacts or fully equipped modules. For use in connector systems, the load should be reduced according to VDE 0298-4:2013 (see page 148).
- Solder temperature for PCB-termination module (black PA) 260 °C for 30 seconds.
- Maximum adjacent arrangement of 10 modules.

TECHNICAL DATA

Voltage information²

Operating voltage 250 V 50 V Rated impulse voltage 2,500 V 2,500 V Degree of pollution

Voltage information acc. to MIL³

Operating voltage 475 V Test voltage 1.475 V

Mechanical data

Total mating force (average) 8 N / Module 6 N / Module Total sliding force (average) Contact diameter 0.7 mm -40 °C to +125 °C Operating temperature Mating cycles minimum 10,000

Materials

Contact body

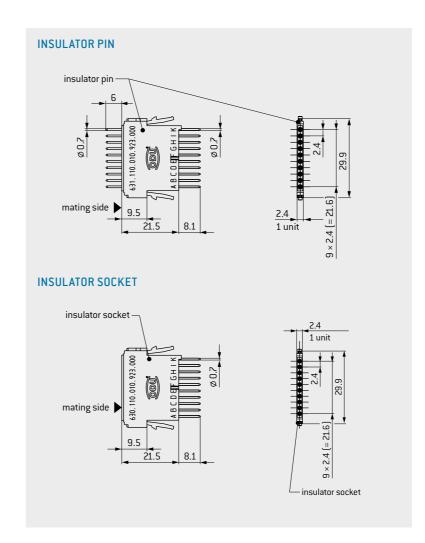
Contact finish

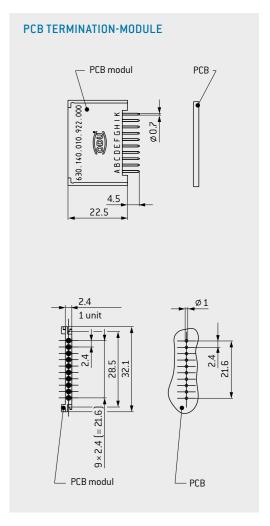
Insulator pin-/socket frame Thermoplastic acc. to UL-94

(Gray)

gold-plated

Insulator PCB Thermoplastic acc. to UL-94


> (Black) Cu alloy


NOTE

- Frame for the transfer of grounding to the board and corresponding grounding socket upon request.
- Explanations of the structure on p. 85.

Description	Part number	Nominal current ¹	Max. continuous current ²	Contact resistance ³
		A	A	mΩ
Insulator socket incl. contacts	630.110.010.923.000	4.5	7	7
Insulator pin incl. contacts	631.110.010.923.000	4.5	7	7
Insulator PCB incl. injected contacts ⁴	630.140.010.922.000	4.5	7	7

⁴ Print contacts injected are not removable.

¹Definition max. continuous current, see page <u>145</u>. ²IEC 60664-1:2007 (VDE 0110-1:2008) see page <u>139</u>. ³See page <u>143</u>.

Determines according to IEC 60512-5-1:2002 (din en 60512-5-1:2003) at increased temperature 45 K. Definition max. continuous current, see page 145. ³ Due to the double transfer between the modules and the PCB-termination modules, the contact resistance is twice as high as with a normal signal module.

MODULE 6 CONTACTS

For the effective PCB contact with quick-change function.

COMPATIBLE WITH MODULE 6 CONTACTS ON P. 90

Contact diameter: 1.3 mm Mating cycles: minimum 10,000 Current-carrying capacity¹: 13 A

TECHNICAL NOTES

- The current load information is valid for single contacts or fully equipped modules. For use in connector systems, the load should be reduced according to VDE 0298-4:2013 (see page 148).
- Solder temperature for PCB-termination module (black PA) 260 °C for 30 seconds.
- Maximum adjacent arrangement of 10 modules.

TECHNICAL DATA

Voltage information²

400 V 160 V Operating voltage 2,500 V 2,500 V Rated impulse voltage Degree of pollution

Voltage information acc. to MIL³

Operating voltage 775 V Test voltage 2,325 V

Mechanical data

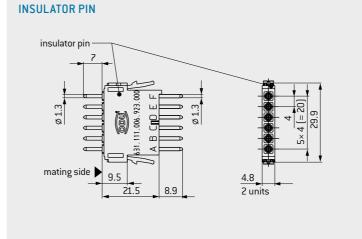
8.4 N / Modul Total mating force (average) 7.2 N / Modul Total sliding force (average) 1.3 mm Contact diameter Operating temperature -40 °C to +125 °C Mating cycles minimum 10,000

Materials

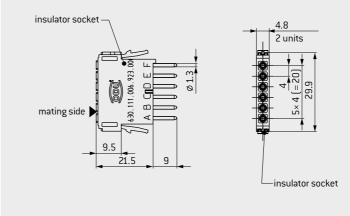
Insulator pin/socket frame Thermoplastic acc. to UL-94

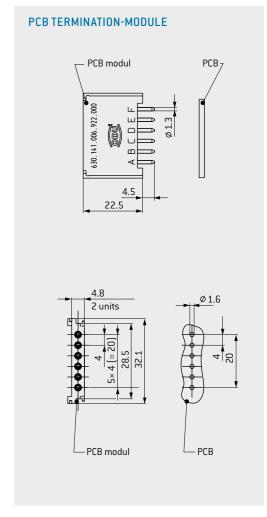
(Gray)

Thermoplastic acc. to UL-94 Insulator PCB


(Black)

Contact body Cu alloy Contact finish gold-plated


NOTE


- Frame for the transfer of grounding to the board and corresponding grounding socket upon request.
- Explanations of the structure on p. 85.

INSULATOR SOCKET

Description	Part number	Nominal current ¹	Max. continuous current ²	Contact resistance ³
		A	A	mΩ
Insulator socket incl. contacts	630.111.006.923.000	8	13	3.6
Insulator pin incl. contacts	631.111.006.923.000	8	13	3.6
Insulator PCB incl. injected contacts ⁴	630.141.006.922.000	8	13	3.6

¹Definition max. continuous current, see page <u>145</u>. ²IEC 60664-1:2007 (VDE 0110-1:2008) see page <u>139</u>. ³See page <u>143</u>.

Determines according to IEC 60512-5-1:2002 (din en 60512-5-1:2003) at increased temperature 45 K. 2 Definition max, continuous current, see page 145. ³ Due to the double transfer between the modules and the PCB-termination modules, the contact resistance is twice as high as with a normal signal module.

⁴ Print contacts injected are not removable.

MODULE 5 CONTACTS

For the effective PCB contact with quick-change function.

COMPATIBLE WITH MODULE 5 CONTACTS ON P. 92

Contact diameter: 2 mm Mating cycles: minimum 10,000 Current-carrying capacity¹: 25 A

TECHNICAL NOTES

- The current load information is valid for single contacts or fully equipped modules. For use in connector systems, the load should be reduced according to VDE 0298-4:2013 (see page 148).
- Solder temperature for PCB-termination module (black PA) 260 °C for 30 seconds.
- Maximum adjacent arrangement of 10 modules.

TECHNICAL DATA

Voltage information²

630 V 250 V Operating voltage 2,500 V 2,500 V Rated impulse voltage Degree of pollution

Voltage information acc. to MIL³

Operating voltage 1.025 V Test voltage 3.075 V

Mechanical data

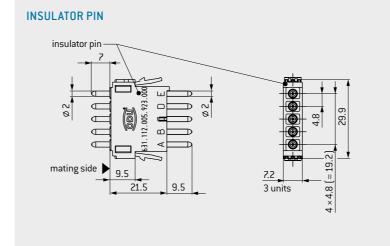
13,5 N / Modul Total mating force (average) 9 N / Modul Total sliding force (average) Contact diameter 2 mm Operating temperature -40 °C to +125 °C minimum 10,000

Mating cycles **Materials**

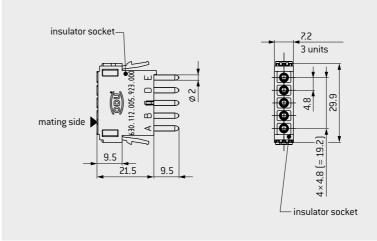
Insulator pin-/socket frame Thermoplastic acc. to UL-94

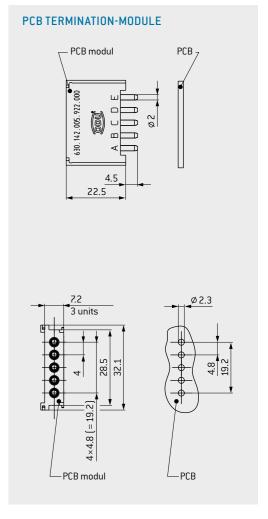
(Gray)

Thermoplastic acc. to UL-94 Insulator PCB


(Black)

Contact body Cu alloy Contact finish gold-plated


NOTE


- Frame for the transfer of grounding to the board and corresponding grounding socket upon request.
- Explanations of the structure on p. 85.

INSULATOR SOCKET

Description	Part number	Nominal current ¹	Max. continuous current ²	Contact resistance ³
		A	A	mΩ
Insulator socket incl. contacts	630.112.005.923.000	16	25	2
Insulator pin incl. contacts	631.112.005.923.000	16	25	2
Insulator PCB incl. injected contacts ⁴	630.142.005.922.000	16	25	2

122

123

¹Definition max. continuous current, see page <u>145</u>. ²IEC 60664-1:2007 (VDE 0110-1:2008) see page <u>139</u>. ³See page <u>143</u>.

Determines according to IEC 60512-5-1:2002 (din en 60512-5-1:2003) at increased temperature 45 K. 2 Definition max. continuous current, see page 145. ³ Due to the double transfer between the modules and the PCB-termination modules, the contact resistance is twice as high as with a normal signal module.

⁴ Print contacts injected are not removable.

BLANK MODULES

FOR YOUR NOTES

BLANK MODULES

Used to fill any gaps, in incomplete frames. The frames must be fully equipped with insulators or blank modules.

TECHNICAL DATA

Insulator

Thermoplastic acc. to UL-94

3 UNITS (7.2 MM)

5 UNITS (12 MM)

Units	Part number
1	631.151.000.923.000
3	631.153.000.923.000
5	631.155.000.923.000

Termination technology	128
Crimping tools	129
Tensile strength diagram for crimp connections	130
Crimp information	131
Assembly aid	132
Removal of contacts	134
Maintenance package	135

ODU-MAC®

00LS

TERMINATION TECHNOLOGY

ODU offers three different contact termination technologies for the single contacts:

- Crimp
- Solder
- PCB

CRIMP TERMINATION

Using contacts to establish connecting lines through crimping creates a permanent, secure and corrosion-free connection. For most people, crimping is easy and quick to carry out.

Through crimping, the conductor and contact materials in the compressed areas become so dense as to create a connection which is nearly gas-tight, and with a tensile strength befitting the conductor material.

Crimping can be carried out on the tiniest of diameters as well as in larger diameters. For small diameters $\{0.14-2.5\,\text{mm}^2\}$, eight-point crimp tools are used; six-point crimp tools are used for larger dimensions. The corner measurement of the crimping is never larger than the original diameter. The cable insulation is not damaged in the process and can be directly attached to the connector end.

For error-free crimping, the bore diameter must be perfectly fitted to the cable. Such error-free crimping is only guaranteed if using ODU-recommended crimping tools. In order to correctly advise you, we need to know your cable type and profile, preferably by means of a sample and corresponding data sheet.

FOR ASSEMBLY INSTRUCTIONS PLEASE REFER TO OUR WEBSITE: WWW.ODU-CONNECTORS.COM.

CRIMPING TOOLS

£

For further crimp information please refer to the table on page 131.

8-POINT CRIMPING TOOL FOR CONDUCTOR CONNECTIONS FROM 0.08 TO 2.5 MM²

With user-friendly digital display.

PART NUMBER: 080.000.051.000.000

POSITIONER FOR CONTACT DIAMETER FROM 0.76 TO 3 MM PART NUMBER: 080.000.051.101.000 Has to be ordered separately.

8-POINT CRIMPING TOOL FOR CONDUCTOR CONNECTIONS FROM 1.5 TO 6 MM²

With user-friendly digital display.

PART NUMBER: 080.000.057.000.000

POSITIONER FOR CONTACT DIAMETER FROM 1.5 TO 3 MM PART NUMBER: 080.000.057.101.000

Has to be ordered separately.

HEXAGONAL CRIMPING TOOL FOR CROSS-SECTIONS (AWG 12), FROM 4 TO 6 MM²

With blocking system.

PART NUMBER: 080.000.062.000.000

MECHANICAL HEXAGONAL HAND CRIMPING TOOL FROM 10 TO 50 MM²

PART NUMBER: 080.000.064.000.000

High pressing force with low manual force through precision mechanics. Folding head facilitates processing of unwieldy connector forms and changing of crimp inserts.

CRIMPING JAWS FOR CONTACT DIAMETER
FROM 5 TO 8 MM SEE PAGE 131.
Has to be ordered separately.

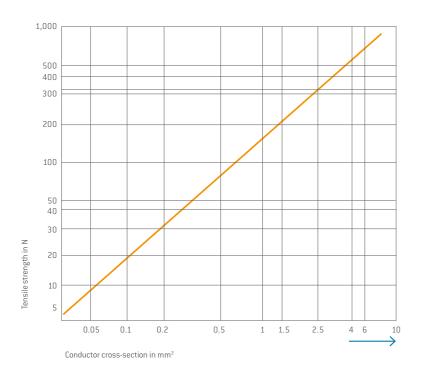
HEXAGONAL CRIMPING TOOL FOR COAX CONTACTS

With blocking system.

PART NUMBER ZANGE: 080.000.039.000.000

CRIMPING JAWS SEE PAGE 131.

Has to be ordered separately.


T0 01

TENSILE STRENGTH FOR CRIMP CONNECTIONS

IEC 60352-2:2013 [DIN EN 60352-2:2014]

Tensile strength diagram of a crimp termination depending upon the conductor cross-section IEC 60352-2:2013 (DIN EN 60352-2:2014). **Example**: A 2.5 mm² conductor must achieve a minimum tensile strength of approx. 320 N.

NOTE

Internal standards and guidelines are used for cross-sections (> 10 mm²), as these are not clearly defined in the international standard.

TESTING ELECTRICAL CONTINUITY FOLLOWING ASSEMBLY/TESTING OF WIRING:

One of the most important functional features is the observance of the specified mating and sliding forces. All socket contacts in fully automatic systems supplied by ODU are therefore tested for 100% observance of these values in the context of process monitoring. This takes place with the correctly chosen testing systems without damage to the socket. However, ODU points out that incorrectly chosen test systems (e.g. test pin)

or processing methods (e.g. test speed) following packaging can damage the sockets/pins. Please note the instructions in the assembly instructions

(www.odu-connectors.com/downloads/assembly-instructions).

We recommend using suitable test adapters here.

CRIMP INFORMATION

Contact diameter			Strip- ping length	8-pt crimping tool 080.000.051.000.000 without positioner	8-pt crimping tool 080.000.057.000.000 without positioner	Hexagonal crimping tool 080.000.062.000.000	Hexagonal crimping tool 080.000.064.000.000	Crimping tool for coax 080.000.039.000.000			
mm	AWG 7 wire 19 wire	mm² Class 5	mm	Positioner 080.000.051.101.000 position / adjustment	Positioner 080.000.057.101.000 position / adjustment		Crimping jaws	Crimping jaws			
	26										
	24										
0.7	22		4+0.5	0.62/9							
0.1		0.14	7	0.0273							
		0.25									
		0.38									
	20										
	18		5+0.5	0.92/10							
1.3		0.5			0.32710						
		0.75									
		1		1.02/10							
	18			1.22/11							
	16		6+0.5	C +0.5	1.27/11						
2	14				C+0.5		1.67/3				
۷		1		1.22/11							
		1.5			1.27/3						
		2.5			1.67/3						
	14				1.67						
	12					Profile no. 3					
3.5	10		7+0.5			Profile no. 3					
3.5		2.5			1.67/1,2						
		4				Profile no. 3					
		6				Profile no. 3					
5		10	10+0.5				080.000.064.110.000				
5		16	10.5.5				080.000.064.101.000				
0		16	10+0.5				080.000.064.116.000				
8		25	18+0.5				080.000.064.125.000				

COAX CRIMP INFORMATION

RG 178 / RG 196				082.000.039.101.000
RG 174/RG 179/RG 187/ RG 188/RG 316	an ne			082.000.039.102.000
RG 58	modu			082.000.039.106.000
RG 223	See n descr			082.000.039.108.000
RG 59	υp			082.000.039.109.000

ASSEMBLY AID

Description

Torque wrench

Torque wrench

Torque wrench

Special bit

Bit Phillips

cross slot size 1

Bit torx TX 10

Assembly tool

collet nut size 1

Bit for coded spindle

Bit slot 6.25 (1.0/50)

Bit combi slot size 1

REMOVAL TOOLS

For use in

Coding socket for frames in

Coding pin for frames in

Mounting screw for frames in

Grounding screw on frames

Screws of the angle bracket in

Assembly of the spindle coding 598.054.109.000.000

a housing

a housing

a housing

in a housing

the spindle locking

Collet nut for shielded

implementation size 1

TORQUE WRENCH

0.9

1.2

3

With cross handle, fixed, automatic release (for inner hexagonal bits with C6.3- or E6.3-shaft).

Recommended

tightening torque

1.2 Nm +/- 0.2 Nm

1 Nm +/- 0.2 Nm

0.9 Nm +/- 0.2 Nm

Bit has to be ordered separately.

ASSEMBLY TOOL HIGH CURRENT CONTACT Ø 8 MM

Required assembly tool For screwing and releasing the contacts. Locking torque: 2.7 Nm +/- 0.1 Nm

PART NUMBER: 087.611.002.001.000

REMOVAL TOOL FOR CONTACTS Ø 0.7 T0 5 MM

Removal of the contact from the front. In the case of already assembled contacts, the cable does not have to be disconnected.

Contact \varnothing	Part number		
mm			
0.7	087.7CC.070.002.000		
1.3	087.7CC.130.004.000		
2	087.7CC.200.003.000		
3.5	087.7CC.350.001.000		
5	087.7CC.680.001.000		

Contact	Part number
Coax 4 contacts	087.7CC.310.001.000
Coax 2 contacts	087.7CC.690.001.000
Compressed air	087.7CC.680.001.000

REMOVAL AND ASSEMBLY OF CONTACTS IS ONLY POSSIBLE WITH ODU TOOLS.

REMOVAL TOOL FOR COAX AND COMPRESSED-AIR CONTACTS

Removal of the contact from the front. In the case of already assembled contacts, the cable does not have to be disconnected.

Part number

598.054.001.000.000

598.054.002.000.000

598.054.003.000.000

598.054.107.000.000

598.054.203.000.000

598.054.102.000.000

598.054.106.000.000

598.054.104.000.000

598.055.001.000.000

REMOVAL OF CONTACTS

MAINTENANCE PACKAGE FOR ODU LAMTAC®/ **ODU TURNTAC® CONTACTS**

REMOVAL OF THE ASSEMBLED CONTACTS

Push the contact to be removed to the front using the cable, in order to make the unlocking easier. The removal tool is pushed forward over the contact into the insulator until there is an audible click. By lightly pulling on the cable, the contact can be pulled from the rear of the insulator. The ODU-MAC Blue-Line has the advantage that the contacts can also be clipped out of the module in an assembled condition without separation of the assembly

DISMANTLING ONLY POSSIBLE USING ODU TOOLS.

Contact lubrication improves the mechanical properties of contact systems. Cleaning the contact surfaces prior to lubrication is also recommended in order to remove pollution. With appropriate care, wear due to high mating frequency can be significantly minimised and the mating and unmating forces reduced. The cleaning and lubricating interval must be individually adapted to circumstances and should only be carried out with products recommended by the contact manufacturer.

ODU has put together a maintenance package to this purpose, so that lubrication can be carried out directly on location. A cleaning brush and a special cleaning cloth, as well as precise instructions allow optimal care of the contacts. In the absence of other specifications, the maintenance package can be used for all ODU contacts and connections.

PART NUMBER: 170.000.000.000.100

For technical properties of the maintenance package please refer our website: www.odu-connectors.com/downloads.

CLEANING INFORMATION

Maintenance instruction 003.170.000.000.000


FURTHER INFORMATION

Never submerge the connector in liquid. The connector may only be put back into operation again when it has been assured that it is completely dry.

Ensure that contact pins are not bent or otherwise damaged. The connector may no longer be used when damage or other signs of wear are detected. Clean with maximum 2.5 bar compressed air to avoid contact damage. A slight blackening of the contact points may occur over the course of the service life and represents no impairment of the electrical properties.

Recommended cleaning agent

Soap: liquid soaps on sodium bicarbonate or potassium base. Alcohol: ethanol 70%, isopropyl alcohol 70%.

International protection classes acc. IEC 60529:2013 (VDE 0470-1:2014)	. 138
Explanations and information on insulation coordination	. 139
Conversions/AWG	. 142
Operating voltage according to EIA-364-20D:2008	. 143
Current-carrying capacity	. 144
Technical terms	. 149

ODU-MAC

NO FY MODELL

INTERNATIONAL PROTECTION CLASSES

i

Acc. IEC 60529:2013 (VDE 0470-1:2014).

	Code letters First code number Second code number						
	rnational Protectio		grees of protection against access to	(Degrees of protection against water)			
	IP	IIdZdI	rdous parts respectively against solid foreign objects)			5	
	<u>"</u>		 6				
Code	Protectio	n against acce	ess to hazardous parts /	Code	Pro	tection again	st harmful effects
number			ss of solid foreign objects	number			gress of water
0	No protection		No protection against contact / No protection against solid foreign objects	0	No protection against water		No protection against water
1	Protection against large foreign objects		Protection against contact with the back of the hand / Protection against solid foreign objects Ø ≥ 50 mm	1	Protection against dripping water		Protection against vertically falling waterdrops
2	Protection against medium-sized foreign objects		Protection against contact with the fingers / Protection against solid foreign objects $\varnothing \ge 12.5$ mm	2	Protection against dripping water (tilted)		Protection against falling water- drops when tilted (any angle up to 15° from the vertical)
3	Protection against small foreign objects		Protection against contact with tools / Protection against solid foreign objects Ø ≥ 2.5 mm	3	Protection against spray water		Protection against spray water (any angle up to 60° from the vertical)
4	Protection against granular foreign objects		Protection against contact with a wire / Protection against solid foreign objects $\emptyset \ge 1.0$ mm	4	Protection against splashing water		Protection against splashing water from all directions
5	Dustproof		Protection against contact with a wire/Protection against uncontrolled ingress of dust	5	Protection against water jet		Protection against water jet from all directions
6	Dustproof		Protection against contact with a wire /Complete protection against ingress of dust	6	Protection against power- ful water jet		Protection against powerful water jet from all directions
				7	Protection against the effects of temporary immersion in water		Protection against ingress of harmful quantities of water by temporary submersion into water
				8	Protection against the effects of continuous immersion in water		Protection against ingress of harmful quantities of water by continuous submersion into water
				9	Protection against high pressure and high water jet temperatures	↑	Protection against water from all directions by high pressure and high temperatures

EXPLANATIONS AND INFORMATION ON INSULATION COORDINATION

IEC 60664-1:2007 (VDE 0110-1:2008): TABLE F.1 — RATED SURGE VOLTAGE FOR OPERATING MEDIA FED DIRECTLY FROM THE LOW VOLTAGE MAINS.

Nominal voltage of the power supply system (network) acc. to IEC 60038:2009 (VDE 0175-1:2012)		Voltage conductor to neutral conductor	Rated impulse voltage Overvoltage category				
Three-phase-system V	Single-phase-system V	derived from nominal voltages a.c. or d.c. up to and including V	I V	II V	III V	IV V	
		50	330	500	800	1,500	
		100	500	800	1,500	2,500	
	120 to 240	160	800	1,500	2,500	4,000	
230/400277/480		300	1,500	2,500	4,000	5,000	
400/692		600	2,500	4,000	6,000	8,000	
1,000		1,000	4,000	6,000	8,000	12,000	

APPLICABLE STANDARDS

IEC 60664-1:2007 (VDE 0110-1:2008) and IEC 61984:2008 (VDE 0627:2009), original (IEC 60664-1:2007 VDE 0110-1:2008) and IEC 61984:2008 (VDE 0627:2009) remains definitive for all of the technical information named.

GENERAL

The selection of a connector cannot only take functionality, number of contacts, current or voltage parameters into account. In fact, consideration of the place of use and the installation conditions prevailing there is indispensable.

Depending upon the installation and ambient conditions, the connector can be used in accordance with the standards in a variety of voltage and current ranges. All of the voltage data listed in this catalogue refers to the use of insulators in the ODU-MAC frame for housings or in the ODU-MAC docking frame.

All of the connectors shown here involve connectors without contact rating (COC) in accordance with IEC 61984:2008 (VDE 0627:2009).

The most important influence variables and the electrical parameters harmonised with these will be explained in more detail in the following. Our technicians would be happy to assist you with any further questions. The following texts and tables are excerpts from the indicated standards.

OVERVOLTAGE CATEGORY

The necessary rated surge voltage is defined through the overvoltage category according to table F.1 together with the nominal voltage used. Depending upon the installation location, the respective overvoltage category is selected according to the criteria listed below for operating media that is fed directly from the low voltage mains.

Overvoltage category I

Operating media for connection to circuits in which measures for limiting the transient overvoltages to an appropriately low value have been taken. For example, connectors for the voltage supply of computer hardware permanently connected to a power supply with electronic overvoltage limitation.

Overvoltage category II

Operating media fed by the fixed installation that consume energy. For example, household devices, portable tools and similar devices.

Overvoltage category III

[= standard, when no special overvoltage category is indicated]
Operating media in permanent installations and cases for
which special requirements for reliability and availability of
the operating media exist. For example, switches in permanent
installations and operating media for industrial use with permanent connection to the permanent installation.

Overvoltage category IV

Operating media for use at the termination point of the installation. For example, electricity meters and primary overcurrent protection devices.

EXPLANATIONS AND INFORMATION ACCORDING TO VDE

DEGREE OF POLLUTION

Potentially occurring pollution combined with moisture can influence the insulation capacity on the surface of the connector. In order to define various rating parameters, a degree of pollution according to the criteria listed below must be selected for the operating medium.

In the case of a connector with a degree of protection of minimum IP 54 IEC 60529:2013 (VDE 0470-1:2014), the insulating parts may be measured enclosed according to the standard for a low degree of pollution. This also applies for mated connectors for which enclosure is ensured by the connector housing and which are only disconnected for testing and maintenance purposes.

Degree of pollution 1

No or only dry, non-conductive pollution is present. The pollution has no influence. For example, computer systems and measuring devices in clean, dry or air-conditioned rooms.

Degree of pollution 2

Only non-conductive pollution is present. However, temporary conductivity due to condensation must be anticipated. For example, devices in laboratories, residential, sales and other business areas.

Degree of pollution 3

(= standard, when no special degree of pollution is indicated)
Conductive pollution occurs or dry, non-conductive pollution
that becomes conductive because of dewfall must be expected.
For example: Devices in industrial, commercial and agricultural operations, unheated storage areas and workshops.

Degree of pollution 4

Permanent conductivity is present, caused by conductive dust, rain or moisture. For example, devices in the open air or outdoor facilities and construction machinery.

Operating voltage (VDE: Rated voltage): Value of a voltage that is specified by the manufacturer for a component, device or operating medium and relates to the operating and performance features.

Depending upon the indicated degree of pollution, the rated voltage is dependent upon the insulating material group of the connector and the respective creepage distances between the individual contacts. The rated voltage may be significantly influenced by the use of blank modules and varying positioning of the contacts in the insulator. Operating media may have more than one value or one range for rated voltage (see table F.4 in IEC 60664-1:2007 (VDE 0110-1:2008)).

NOMINAL VOLTAGE

A suitably rounded voltage value indicated by the manufacturer for the designation or identification of an operating medium. In these explanations, the term nominal voltage is used for the value of the issued voltage indicated by the power supply company (PSC) or by the manufacturer of the voltage source for classification of the overvoltage category.

RATED IMPULSE VOLTAGE

Value of an impulse withstand voltage that is indicated by the manufacturer for an operating medium or a part of this, and which indicates the defined endurance of its insulation against transient (brief, duration of a few milliseconds) overvoltages. The impulse withstand voltage is the highest value of the surge voltage of a defined form and polarity which will not result in the dielectric breakdown of the insulation under defined conditions.

Depending upon the indicated degree of pollution, the rated surge voltage depends upon the clearance distance between the individual contacts. The rated surge voltage may be influenced significantly by the usage of blank modules and varied positioning of the contacts in the insulators, (see table F.2 in IEC 60664-1:2007 (VDE 0110-1:2008)).

In the most recent edition of IEC 60664-1:2007 (VDE 0110-1:2008), the minimum clearance distances for operating media not connected directly to the low voltage mains should be measured according to the possible permanent voltages, the temporary overvoltages or periodic peak voltages (see table F.7 in IEC 60664-1:2007 (VDE 0110-1:2008)).

IMPULSE TEST VOLTAGE/ POWER FREQUENCY TEST VOLTAGE

Highest value of the surge voltage of a defined form and polarity that will not result in a dielectric breakdown or flashover of the insulation under defined conditions.

CLEARANCE DISTANCE

The shortest distance in the air between two conductive parts.

CREEPAGE DISTANCE

The shortest distance between two conductive parts over the surface of an insulation material. The creepage distance is influenced by the degree of pollution applied.

TEST VOLTAGE

The dielectric strength of the connector is confirmed according to the standard corresponding to the indicated rated surge voltage by applying the test voltage according to table F.5 over a defined time range.

IEC 60664-1:2007 (VDE 0110-1:2008): table F.5 – test voltages for testing clearance distances at different altitudes (the voltage levels are valid only to verify the clearance distances).

Rated impulse voltage	Test impulse voltage at sea level	Test impulse voltage at 200 m elevation	Test impulse voltage at 500 m elevation
û kV	û kV	û kV	û kV
0.33	0.357	0.355	0.35
0.5	0.541	0.537	0.531
0.8	0.934	0.92	0.899
1.5	1.751	1.725	1.685
2.5	2.92	2.874	2.808
4	4.923	4.874	4.675
6	7.385	7.236	7.013
8	9.847	9.648	9.95
12	14.77	14.471	14.025

CONVERSIONS/AWG (AMERICAN WIRE GAUGE)

•	
Ī	

Circular wire							
AWG	Diam	neter	Cross- section	Weight	Max. resist- ance		
	Inch	mm	mm²	kg/km	Ω/km		
10 (1)	0.1020	2.5900	5.2700	47.000	3.45		
10 (37/26)	0.1109	2.7500	4.5300	43.600	4.13		
12 (1)	0.0808	2.0500	3.3100	29.500	5.45		
12 (19/25)	0.0895	2.2500	3.0800	28.600	6.14		
12 (37/28)	0.0858	2.1800	2.9700	26.300	6.36		
14 (1)	0.0641	1.6300	2.0800	18.500	8.79		
14 (19/27)	0.0670	1.7000	1.9400	18.000	9.94		
14 (37/30)	0.0673	1.7100	1.8700	17.400	10.50		
16 (1)	0.0508	1.2900	1.3100	11.600	13.94		
16 (19/29)	0.0551	1.4000	1.2300	11.000	15.70		
18 (1)	0.0403	1.0200	0.8200	7.320	22.18		
18 (19/30)	0.0480	1.2200	0.9600	8.840	20.40		
20 (1)	0.0320	0.8130	0.5200	4.610	35.10		
20 (7/28)	0.0366	0.9300	0.5600	5.150	34.10		
20 (19/32)	0.0384	0.9800	0.6200	5.450	32.00		
22 (1)	0.0252	0.6400	0.3240	2.890	57.70		
22 (7/30)	0.0288	0.7310	0.3540	3.240	54.80		
22 (19/34)	0.0307	0.7800	0.3820	3.410	51.80		
24 (1)	0.0197	0.5000	0.1960	1.830	91.20		
24 (7/32)	0.0230	0.5850	0.2270	2.080	86.00		
24 (19/36)	0.0252	0.6400	0.2400	2.160	83.30		
26 (1)	0.1570	0.4000	0.1220	1.140	147.00		
26 (7/34)	0.0189	0.4800	0.1400	1.290	140.00		
26 (19/38)	0.0192	0.4870	0.1500	1.400	131.00		
28 (1)	0.0126	0.3200	0.0800	0.716	231.00		
28 (7/36)	0.0150	0.3810	0.0890	0.813	224.00		
28 (19/40)	0.0151	0.3850	0.0950	0.931	207.00		
30 (1)	0.0098	0.2500	0.0506	0.451	374.00		
30 (7/38)	0.0115	0.2930	0.0550	0.519	354.00		
30 (19/42)	0.0123	0.3120	0.0720	0.622	310.00		
32 (1)	0.0080	0.2030	0.0320	0.289	561.00		
32 (7/40)	0.0094	0.2400	0.0350	0.340	597.10		
32 (19/44)	0.0100	0.2540	0.0440	0.356	492.00		
34 (1)	0.0063	0.1600	0.0201	0.179	951.00		
34 (7/42)	0.0083	0.2110	0.0266	0.113	1,491.00		
36 (1)	0.0050	0.1270	0.0127	0.072	1,519.00		
36 (7/44)	0.0064	0.1630	0.0161	0.130	1,322.00		
38 (1)	0.0040	0.1000	0.0078	0.072	2,402.00		
40 (1)	0.0031	0.0800	0.0050	0.043	3,878.60		
42 (1)	0.0028	0.0700	0.0038	0.028	5,964.00		
44 (1)	0.0021	0.0540	0.0023	0.018	8,660.00		

The American Wire Gauge (AWG) is based on the principle that the cross-section of the wire changes by 26 % from one gauge number to the next. The AWG numbers decrease as the wire diameter increases, while the AWG numbers increase as the wire diameter decreases. This only applies to solid wire.

However, stranded wire is predominately used in practice. This has the advantage of a longer service life under bending and vibration as well as greater flexibility in comparison with solid wire.

Stranded wires are made of multiple, smaller-gauge wires (higher AWG number). The stranded wire then receives the AWG numbers of a solid wire with the next closest cross-section to that of the stranded wire. In this case, the cross-section of the stranded wire refers to the sum of the copper cross-sections of the individual wires.

Accordingly, strands with the same AWG number but different numbers of wires differ in cross-section. For instance, an AWG 20 strand of 7 AWG 28 wires has a cross-section of 0.563 mm², while an AWG 20 strand of 19 AWG 32 wires has a cross-section of 0.616 mm².

Source: Gore & Associates, Pleinfeld

OPERATING VOLTAGE

i

EIA-364-20D:2008 [SAE AS 13441:2004 method 3001.1].

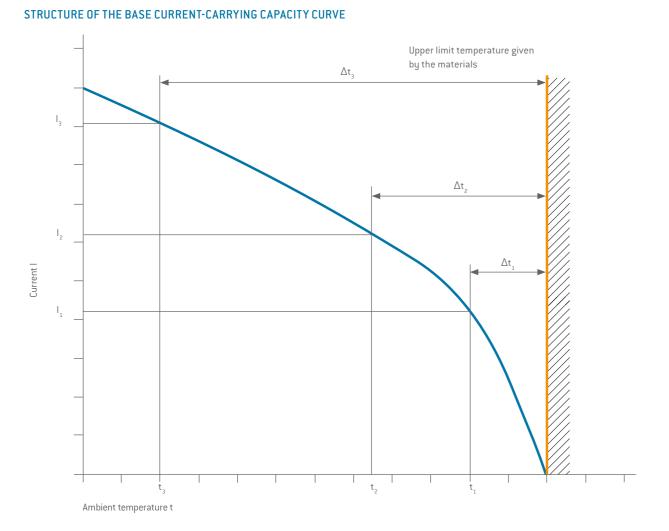
The values specified in the catalogue correspond to SAE AS 13441:2004 method 3001.1. The table values were determined according to EIA 364-20D:2008. The inserts were tested while mated, and the test current was applied to the pin insert.

75% of the dielectric withstanding voltage is used for the further calculation. The operating voltage is 1/3 of this value.

All tests were conducted at normal indoor climate and apply up to an altitude of 2,000 m. If there are any deviations, the derating factors are to be factored in according to the applicable standards.

Test voltage: Dielectric withstanding voltage \times 0.75 Operating voltage: Dielectric withstanding voltage \times 0.75 \times 0.33

ATTENTION:


With certain applications, the safety requirements for electrical devices are very strict in terms of operating voltage. In such cases, the operating voltage is defined according to the clearance and creepage distances between parts which could be touched.

When selecting such a connector, please contact us and let us know the safety standard which the product must meet.

BASE FOR CURRENT-CARRYING CAPACITY

Derating measurement procedure IEC 60512-5-2:2002 (DIN EN 60512-5-2:2003).

A current-carrying capacity curve metrologically determined according to the method described in IEC 60512-5-2:2002 (DIN EN 60512-5-2:2003) depending on the permissible limit temperature of the materials.

The current-carrying capacity of a connector is determined by measurement. It is determined taking self-heating by Joule heat and the ambient temperature into account, and is limited by the thermal properties of the contact materials used. Their upper limit temperature may not be exceeded in the process.

The relationship between current, the resulting temperature increase, conditioned by the dissipation loss at the contact resistance, and the ambient temperature is represented in a

curve. The curve is plotted in a linear coordinate system with current "I" as Y-axis and temperature "t" as X-axis. The upper limiting temperature forms the limit of the diagram.

Over three measurements, the temperature rise due to Joule heat (Δt) is measured respectively for different currents on minimum three connectors, and the resulting values are joined to produce the parabolic basic curve. The basic curve is then used to derive the corrected current-carrying capacity curve (derating curve). The safety factor ($0.8 \times ln$) also makes allowance for factors such as manufacturing tolerances and uncertainties in temperature measurement or the measuring arrangement.

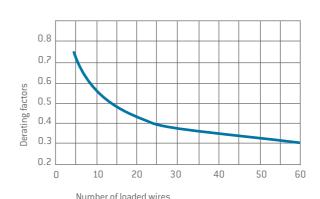
CURRENT LOAD

(In dependence on VDE 0276-1000:1995).

i

RATED CURRENT (NOMINAL CURRENT)

The metrologically determined current which is permitted to flow continuously through all contacts at the same time and will increase the contact temperature by 45 Kelvin. The amperage is determined according to the derating measurement method (DIN EN 60512-5-2:2003) and derived from the derating curve. The values specified in the catalogue apply to either individual contacts or completely assembled inserts/modules, as indicated.


MAX. CONTINUOUS CURRENT

The measured amperage at room temperature (approx. 20 °C) which increases the contact temperature to the limit temperature. The values specified in the catalogue apply to either individual contacts or completely assembled inserts/modules, as indicated.

DERATING FACTORS

In the case of multi-position connectors and cables, heating is greater than with individual contacts. It is therefore calculated with a derating factor.

There are no direct regulations for connectors in this context. The derating factors for multi-core cables pursuant to VDE 0298-4:2013 are applied. The derating factor assumes relevance as of 5 live wires.

Number of loaded wires	Derating factor
5	0.75
7	0.65
10	0.55
14	0.5
19	0.45
24	0.4
40	0.35
61	0.3

Load and derating factors

Multi-core plastic cable with conductor cross-section of 1.5 to 10 $\rm mm^2$ when installed in the open air.

Example:

VA cable with 24 wires is used (24 contacts). The nominal cross-section of a wire is 6 mm². A derating factor of 0.4 (e.g. cable installed in the open air) is to be presumed for the load reduction depending upon the number of live cable wires. A 6 mm² Cu line (contact diameter 3.0 mm) can be used according to current-carrying capacity with 39 ampere. The 24 contacts plug can thus be loaded with a max. of $15.6 \, \text{A/contact} \, [0.4 \times 39 \, \text{A}]$.

NOTE

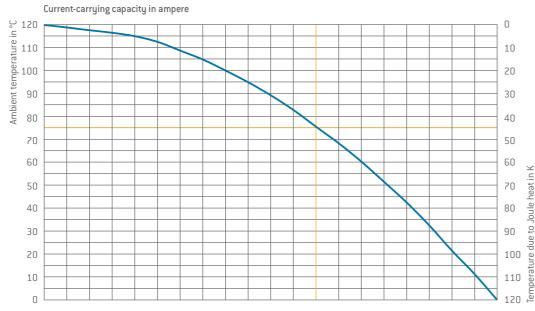
Designs may differ depending upon the wiring of the modules and be verified with a heating test.

TECHNICAL INFORMATION

TECHNICAL INFORMATION

CURRENT-CARRYING CAPACITY DIAGRAM

CURRENT-CARRYING CAPACITY DIAGRAM

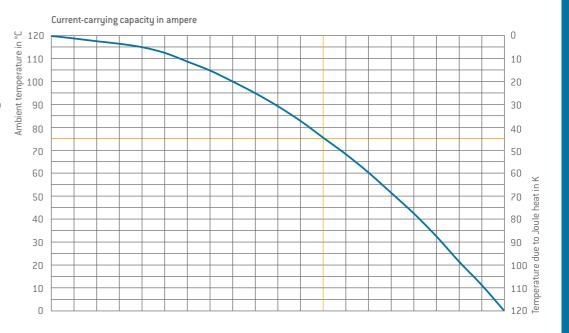


FOR SINGLE CONTACTS

Measurement made in acc. with IEC 60512-5-2:2002 (DIN EN 60512-5-2:2003) (derived base curve shown = 0.8 × Base curve).

Upper limit temperature: +120 °C.

Termination with nominal cross-section.


Contact	Contact Ø	Termination cross-section mm²	1	1	1	1	1	1	1	T	1	1		1	1	1	1	1		1	1	1	1
	0.7	0.38	0		1		2.5		3.5		5		6		7		8.5		9.5		11		12
	1.3	1	0	-1	2	I	4	1	6.5	1	8.5	1	10.5	1	12.5	1	15	1	17	1	19.5	I	21.5
IAC®	2	1.5	0		3		6		9		12		15		18		21		24		27		30
ODU TURNTAC®		2.5	0	-1	4	1	8	1	12	1	16	1	20	1	24	1	27	1	30	1	33	1	37
ngo	3.5	2.5	0		4		8		12.5		16.5		20.5		25		29		33		37		41
		4	0	-1	6.5	1	13	1	19.5	ı	26	1	32.5	1	39	1	45	1	51.5	1	58	1	64
		6	0		6.5		13		19.5		26		32.5		39		45		51.5		58		64
⊛	5	10	0	-1	10	1	20	1	29	1	38	1	47	1	56	I	67	I	78	1	90	1	99
MTAC	5	16	0		11		22		33		44		56		68		81		94		108		119
ODU LAMTAC®	8	16	0	-1	12	I	24	1	37	I	50	1	63	1	76	1	92	1	108	I	123	I	135
0		25	0		16		33		50		67		85		103		118		135		150		165
														Non	ninal cur	rent				Max	. continu	ous o	current

FOR FULLY EQUIPPED MODULES

Measurement made in acc. with IEC 60512-5-2:2002 (DIN EN 60512-5-2:2003) (derived base curve shown = 0.8 × Base curve).

Upper limit temperature: +120 °C.

Termination with nominal cross-section.

Module	Contact Ø	Termination cross-section mm²																					1
20-pol.	0.7	0.38	0		1		2		3		4		5		5.5		6.5		7.5		8.5		9.5
10 mal	0.7	0.38	0	I	1	1	2	1	3	1	4	ı	5	1	5.5	1	6.5	1	7.5	1	8.5	1	9.5
10-ри.		PCB	0		1		1.5		2.5		3		4		4.5		5.5		6		7		7.5
Casl	1.2	1	0	I	1.5	1	3.5	1	5.5	1	7.5	ı	9.5	ı	11.5	1	14	1	16.5	1	19	1	20.5
ь-роі.	1.5	PCB	0		1.5		2.5		4		5		6.5		8		9.5		11		12.5		14
5-pol.	2	1.5	0	ı	2.5	ı	5	I	7.5	I	10	ı	12.5	ı	15	1	17.5	1	20	1	22	Î	24
		2.5	0		3		6		9		12		15		19		22		25		28		31
		PCB	0	I	3	I	5.5	1	8	1	11	ı	13.5	ı	16	ı	19	1	22	1	25	1	27.5
3-pol.	3.5	2.5	0		3.5		7		10.5		14		17.5		21		24		27.5		31		34.5
		4	0	I	5	1	10	I	15	1	20	ı	25	I	30	1	34	I	39	1	44	1	49
		6	0		5		10		15		20		25		30		34		39		44		49
	5	10	0	I	9	ı	18	I	27	ī	37	ı	46	ı	56	I	65	I	74	1	83	Ī	92
		16	0		11		22		33		45		56		68		79		90		101		112
2-poi.	0	16	0	ı	13	ı	25	1	38	1	50	ı	63	1	75	1	88	1	100	1	113	1	125
	8	25	0		17		34		50		66		83		100		116		132		149		166
	20-pol. 10-pol. 6-pol. 5-pol.	20-pol. 0.7 10-pol. 0.7 6-pol. 1.3 5-pol. 2	20-pol. 0.7 0.38	O Cross-section	20-pol. 0.7 0.38 0	20-pol. 0.7 0.38 0 1 1 10-pol. 0.7	Cross-section Cross-sectio	20-pol. 0.7 0.38 0 1 2 10-pol. 0.7 PCB 0 1 1.5 1 3.5 6-pol. 1.3 PCB 0 1.5 2.5 5-pol. 2 2.5 0 3 6 PCB 0 1 3 1 5.5 3-pol. 3.5 4 0 1 5 1 10 6 0 5 10 2-pol. 0 1 18 5 16 0 11 22	20-pol. 0.7 0.38 0	20-pol. 0.7 0.38 0	20-pol. 0.7 0.38 0 1 2 3 10-pol. 0.7 0.38 0 1 1 2 3 10-pol. 0.7 PCB 0 1 1.5 1.5 1.5 1 6-pol. 1.3 PCB 0 1.5 1.5 1.5.5 1 5-pol. 2 2.5 0 3.6 9 PCB 0 1.5 1.5 1.8 1 5-pol. 3.5 4 0 1 5 1 10 1 15 1 6 0 5 10 15 2-pol. 3.6 0 1 1 1 1 2 3 3 3 1 1 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1	20-pol. 0.7 0.38 0	20-pol. 0.7 0.38 0 1 2 3 4 1 10-pol. 0.7 PCB 0 1 1.5 2.5 3 3 4 1 10-pol. 1.3 PCB 0 1.5 1.5 1.5 1.5 1.7.5 1 10 1 1.5 1.5 1.5 1.7.5 1 10 1 1.5 1.5 1.5 1.7.5 1 10 1 1 1 1 1 1 1	20-pol. 0.7 0.38 0 1 2 3 4 5 10-pol. 0.7 0.38 0 1 1 1 2 1 3 1 4 1 5 10-pol. 0.7 PCB 0 1 1.5 1 3.5 1 5.5 1 7.5 1 9.5 6-pol. 1.3 PCB 0 1.5 2.5 4 5 6.5 5-pol. 2 2.5 0 3 6 9 12 15 PCB 0 1 3 1 5.5 1 8 1 11 1 13.5 3-pol. 3.5 4 0 1 5 1 10 1 15 1 20 1 25 6 0 5 10 15 10 15 1 20 1 25 6 0 5 10 15 20 25 2-pol. 8	20-pol. 0.7 0.38 0 1 2 3 4 5 10-pol. 0.7 PCB 0 1 1.5 2.5 3 4 5 1 10-pol. 1.3 PCB 0 1.5 1.5 1 7.5 1 9.5 1 1.5 1.5	20-pol. 0.7 0.38 0 1 2 3 4 5 5.5	20-pol. 0.7 0.38 0 1 2 3 4 5 5.5 1 10-pol. 0.7 0.38 0 1 1 1 2 1 3 1 4 1 5 1 5.5 1 1 1 1 1 1 1 1 1	20-pol. 0.7 0.38 0	20-pol. 0.7 0.38 0 1 2 3 4 5 5.5 6.5 10-pol. 0.7 0.38 0 1 1 2 1 3 1 4 1 5 1 5.5 1 6.5 1 10-pol. 0.7 PCB 0 1 1.5 1.5 1.5 1 5.5 1 5.5 1 6.5 1 1.5 1.35 1 5.5 1 7.5 1 9.5 1 11.5 1 14 1 1 1.5 1.35 1 5.5 1 7.5 1 9.5 1 11.5 1 14 1 1 1.5 1.5 1.5 1.	20-pol.	20-pol. 0.7 0.38 0 1 2 3 4 5 5.5 1 6.5 7.5 1 10-pol. 0.7 PCB 0 1 1.5 1 3.5 1 5.5 1 6.5 1 7.5 1 10-pol. 1.3 PCB 0 1.5 1 3.5 1 5.5 1 6.5 1 7.5 1 10-pol. 2.5 1 3 1 4 1 5 1 1.5 1 1.5 1 1.4 1 1.6 5 1 1.5	20-pol. 0.7 0.38 0	20-pol. 0.7 0.38 0

Nominal current Max. continuous current

146

LINE CURRENT LOAD

TECHNICAL TERMS

The current-carrying capacity of the individual conductors is frequently lower than that of the individual contacts used. When determining the maximum current-carrying capacity, the lowest value is always to be taken into account.

Laying procedure	Exposed in air	Exposed in air or on surfaces							
	Single-wire lines PVC, PE, PUR, TPE heat resistant	for hand-held dev	Multi-wire highly flexible lines for hand-held devices, wire/sheath cold-resistant, PVC insulated						
Number of loaded wires	1	2	4						
Nominal cross-section copper conductor in mm²		Current							
0.141	3			2					
0.251	5			4					
0.341	8			6					
0.5 ¹	12	3	3	9					
0.75	15	6	6	12					
1	19	10	10	15					
1.5	24	16	16	18					
2.5	32	25	20	26					
4	42	32	25	34					
6	54	40		44					
10	73	63		61					
16	98			82					
25	129			108					
35	158			135					
50	198			168					
Current load acc. to:		VDE 0298-4:7	2013 table 11						

Carrying capacity of cables with a rated voltage of up to 1,000 V and of heat resistant cables.

The specification of data does not release one from the need to conduct the test. The original standards remain authoritative for all of the listed technical specifications.

AMBIENT TEMPERATURE

Temperature of the air or other medium in which a piece of equipment is intended to be used in. (IEC 44/709/CDV:2014 (VDE 0113-1:2014)).

AWG

American Wire Gauge - see page 142.

BASE CURVE

See page 144.

CHEMICAL RESISTANCE

Many secondary processing procedures use adhesives, cleaning agents or other chemicals on our products. Contact with unsuitable chemicals may have an adverse effect on the mechanical and electrical properties of the insulation and housing materials which specified properties may not be able to withstand. Please observe our processing suggestions and technical notes in this catalogue as well as the special information for the plastic housings.

CLEARANCE DISTANCE

The insulation coordination is explained in detail starting on page 141.

CODING (ORIENTATION)

Arrangement with which differing polarization of otherwise identical connectors prevents interchangeability. This is a good idea if two or more identical connectors are attached to the same device (see also compatible connectors, see page $\underline{66}$).

CONNECTORS

Also known as connectors without contact rating (COC): [IEC 61984:2008 (VDE 0627:2009)]. An element which enables electrical conductors to be connected and is intended to create and/or separate connections with a suitable counterpart.

CONTACT RESISTANCE

Total resistance value measured from terminal to terminal. In this case, the resistance is significantly lower than the contact resistance. The specifications are average values.

CORES

Electrical conductor, solid wire or multi-wire strand, with insulation as well as any conductive layers. Cables or leads may have one or more cores.

CREEPAGE DISTANCES

The shortest distance between two conductive parts along the surface of a solid insulation material. This factors in all elevations and recesses in the insulator, as long as defined minimum dimensions are on hand. The insulation coordination is explained in detail from page 141.

CRIMP BARREL

A terminal sleeve which can accommodate one or more conductors and be crimped by a crimping tool.

CRIMP CONNECTION (CRIMP TERMINATION)

The permanent, non-detachable and solder-free mounting of a contact to a conductor via deforming or shaping under pressure to make a good electrical and mechanical connection. Executed with crimping tool, press or automatic crimping machine (see page 128).

CRIMP TERMINATION

Termination technology, see crimp connection.

CRIMPING AREA

The specified area of the crimp barrel in which the crimp termination is executed by means of deforming or shaping the barrel under pressure around the conductor.

CURRENT-CARRYING CAPACITY [NOMINAL CURRENT AND MAXIMUM CONTINUOUS CURRENT]

The data relates to adequately dimensioned connection cable in accordance with IEC 60228:2004 (VDE 0295:2005; class 5), so that no significant temperature increase here. The indicated temperature increase takes place through the contact. The specifications are average values.

DEGREE OF POLLUTION

The insulation coordination is explained in detail from page 139.

ECHNICAL INFORMATION

TECHNICAL TERMS

TECHNICAL TERMS

DELIVERY FORM

The delivery of the connector is carried out in the form of individual parts.

DERATING CURVE

See page <u>144</u>.

DERATING FACTOR

According to VDE 0298-4:2013, with connectors and cables over 5 contacts, the heating is greater than it is with individual contacts. For that reason, the aforementioned standard is calculated with a derating factor.

DERATING MEASUREMENT METHOD IEC 60512-5-2:2002 (DIN EN 60512-5-2:2003)

See page 144.

INSULATOR

Part of a connector which separates conductive parts with different potentials from one another; usually identical to the contact carrier.

LUBRICATION

All standard contacts are lubricated at the factory. We recommend the ODU maintenance package for subsequent lubrication [http://www.odu.de/downloads.]

MATERIALS (STANDARD DESIGN)

Pins and bodies of the sockets are manufactured from a CuZn alloy and silver or gold-plated. The lamellas consist of a CuBe alloy and are also silver or gold-plated. The springwire contact wires consist of a CuSn alloy and are also silver or gold-plated.

MATING AND SLIDING FORCE (UNMATING FORCE)

The force required to fully insert or withdraw pluggable elements without the influence of a coupling or locking device. The higher value of the mating force is caused by the "attachment peak". Subsequently, only the pure sliding force has an effect. The data refers to contacts in a lubricated condition (status at delivery) and after approx. 30 mating cycles. The forces are/may be higher in new condition (lubricated). The data represents average values with a potential fluctuation of $\pm\,50\,\%$.

MATING CYCLES

Mechanical actuation of connectors by mating and sliding. A mating cycle consists of one mating and sliding action. 10,000 mating cycles are the standard value for ODU TURNTAC and ODU LAMTAC contacts. These values only apply under the following circumstances: clean environment, appropriate radial guidance, impeccable counterpins.

MAX. CONTINUOUS CURRENT

The metrologically determined amperage at room temperature (approx. 20 °C) which increases the contact temperature to the limit temperature. The values specified in the catalogue apply to either individual contacts or completely assembled inserts/modules, as indicated.

NOMINAL CURRENT IEC 60512-5-2:2002 (DIN EN 60512-5-2:2003)

See rated current.

NOMINAL SINGLE CONTACT CURRENT LOAD

The current-carrying capacity which each individual contact can be loaded with on its own (see from page 144).

NOMINAL VOLTAGE

The voltage which the manufacturer specifies for a connector and which the operating and performance features relate to.

OPERATING TEMPERATURE

See uppermost limit temperature (p. <u>151</u>). Single modules may differ from the indicated temperature values. Here you find the technical information on the appropriate pages.

PCB (A.K.A. "PRINTED CIRCUIT BOARD")

A PCB is a carrier for electronic components. It serves the purposes of mechanical mounting and electrical connection.

PCB TERMINATION

Production of a conductive connection between the PCB and a component in through-hole assembly, THT (through-hole technology).

RATED CURRENT (NOMINAL CURRENT)

See page 145.

RATED VOLTAGE

Value of a voltage which is specified by the manufacturer for a component, device or operating medium and relates to the operating and performance features.

SOLDER CONNECTION (SOLDER TERMINATION)

Termination technology in which a molten additional metal (solder) with a lower melting point than the base materials to be connected is used to attach two metallic materials to one another.

SOLDER TERMINATION

Termination technology, see solder connection.

SPINDLE LOCKING

Locking of two halves of a connector pair by one or more screws, which are generally fluted or have a toggle for easier activation.

TEST VOLTAGE

The voltage which a conductor can withstand under defined conditions without dielectric breakdown or flashover.

TERMINATION CROSS-SECTION

The specified cross-sections correspond to a "fine-wire" conductor structure pursuant to IEC 60228:2004 (VDE 0295:2005; Class 5) or a "fine-wire" conductor structure (7/19 wire) according to AWG (ASTM B258-14).

TERMINATION TECHNOLOGIES

Methods for connecting the leads to the electro-mechanical element, such as solder-free connections pursuant to IEC 60352 (DIN EN 60352): crimp, screw connection etc. or soldering connection (see page 128).

TIGHTNESS IEC 60529:2013 (VDE 0470-1:2014)

See protection types on page 138.

UPPERMOST LIMIT TEMPERATURE

The highest permissible temperature at which the connector may still be operated. This includes the self-heating via the current carrying capacity. In the case of standard contacts (ODU TURNTAC), this amounts to +120 °C.

WIRE

Wires (solid conductors) are available with an insulator sleeve and/or electrical shielding. Cables or conductors may be made up of one or more wires.

GENERAL NOTE

The connectors listed in this catalogue are intended for use in high voltage and frequency ranges. Suitable precautionary measures must be taken to ensure that people do not come into contact with live conductors during installation and operation. All entries in this catalogue were thoroughly reviewed before printing. ODU reserves the right to make changes based on the current state of knowledge without prior notice without being obliged to provide replacement deliveries or refinements of older designs.

150

ODU GROUP WORLDWIDE

HEADQUARTERS

ODU GmbH & Co. KG

Pregelstraße 11, 84453 Mühldorf a. Inn, Germany Phone: +49 8631 6156 - 0, Fax: +49 8631 6156 - 49, E-mail: zentral@odu.de

SALES SUBSIDIARIES

ODU Denmark ApS

Phone: +45 2233 5335 E-mail: odu.denmark@odu.de www.odu-denmark.dk

ODU France SARL

Phone: +33 1 3935 - 4690 E-mail: odu@odu.fr

www.odu.fr

ODU Italia S.R.L.

Phone: +39 331 8708847

E-mail: sales@odu-italia.it
www.odu-italia.it

ODU Japan K.K.

Phone: +81 3 6441 3210 E-mail: sales@odu.co.jp www.odu.co.jp

ODU Scandinavia AB

Phone: +46 176 18262 E-mail: sales@odu.se www.odu.se

ODU (Shanghai)

International Trading Co., Ltd. Phone: +86 21 58347828 - 0

E-mail: oduchina@odu.com.cn

www.odu.com.cn

ODU-UK Ltd.

Phone: +44 330 002 0640 E-mail: sales@odu-uk.co.uk www.odu-uk.co.uk

ODU-USA Inc.

Phone: +1 805 4840540 E-mail: sales@odu-usa.com www.odu-usa.com

Further information and specialized representatives can be found at:

www.odu.de/sales

PRODUCTION SITES

Germany Otto Dunkel GmbH

China ODU (Shanghai) Connectors Manufacturing Co. LTD

Mexico ODU Mexico Manufacturing S.R.L. de C.V.
Romania ODU Romania Manufacturing S.R.L.

USA ODU-USA Inc.

Simply scan the QR code to download the entire brochure.

ODU-MAC BLUE-LINE / B / 0117 / E The right is reserved to modify product and tech